
Visual Computing Systems
Stanford CS348K, Fall 2018

Lecture 19:

Systems Trends in Real-Time Ray Tracing
+ Course Review

Stanford CS348K, Fall 2018

Presentations: next Tuesday
▪ 10-minute slots per project group

▪ Aim for eight minutes of speaking + 2 minutes discussion

▪ Key goal of the presentation:
- Tell the class:

- What the problem was (goals and constraints)
- What the most interesting part of the project was (“The

challenging part was how we solved…”)
- Provide a clear piece of evidence that your goals were

achieved (“here is our graph of performance vs…”)

Stanford CS348K, Fall 2018

A few clear talk tips
For a full treatment see:

http://graphics.stanford.edu/~kayvonf/misc/cleartalktips.pdf

Establish inputs, outputs, and constraints
(goals and assumptions)

1.

Establish goals and assumptions early

▪ Given these inputs, we wish to generate these outputs

▪ We are working under the following constraints
- Example: the outputs should have these properties
- Example: the algorithm...

- Should be real-time

- Should be parallelizable

- Cannot require artist intervention

- Must be backward compatible with this content creation pipeline

Your contribution is typically a system or algorithm that meets the
stated goals under the stated constraints.

Always, always, always
explain any figure or graph

(the audience does not want to think about things you can tell them)

2.

Explain every figure
▪ Explain every visual element used in the figure (don’t make the audience decode a figure)

▪ Refer to highlight colors explicitly (explain why the visual element is highlighted)

Example voice over: “Here I’m showing you a pixel grid, a projected triangle, and the location of four sample points
at each pixel. Sample points falling within the triangle are colored red.

Explain every figure
▪ Lead the listener through the key points of the figure

▪ Useful phrase: “As you can see...”
- It’s like verbal eye contact. It keeps the listener engaged and makes the listener happy... “Oh yeah, I can see

that! I am following this talk!”

Example voice over: “Now I’m showing you two adjacent triangles, and I’m coloring pixels according to the number
of shading computations that occur at each pixel as a result of rendering these two triangles. As you can see from
the light blue region, pixels near the boundary of the two triangles get shaded twice.

Explain every results graph
▪ May start with a general intro of what the graph will address (anticipate result)
▪ Then describe the axes (and your axes better have labels!)
▪ Then describe the one point that you wish to make with this results slide (more on this later!)

Example voice over: “Our first questions were about performance: how much did merging reduce the number of the shaded quad fragments?
And we found out that the answer is a lot. This figure plots the number of shading computations per pixel when rendering different
tessellations of the big guy scene. X-axis gives triangle size. If you look at the left side of the graph, which corresponds to a high-resolution
micropolygon mesh, you can see that merging, shown by yellow line, shades over eight times less than the convention pipeline.

In the results section:
One point per slide!
One point per slide!
One point per slide!

(and the point is the title of the slide!!!)

3.

▪ Place the point of the slide in the title:
- Provide audience context for interpreting the graph (“Let me see if I can verify that

point in the graph to check my understanding”)

Corollary to the one point per slide rule

▪ In general, you don’t want to show data on a results slide that
is unrelated to the point of the slide

▪ This usually means you need to remake the graphs from your
paper (it’s a pain, but sorry, it’s important) *

* This is an example of a tip for conference talk polish: not necessary for class talks

Bad examples of results slides
▪ Notice how you (as an audience member)

are working hard to interpret the trends in
these graphs

- You are asking: what do these results say?

▪ You just want to be told what to look for

Titles matter.

If you read the titles of your talk all the way through, it should be a
great summary of the talk.

(basically, this is “one-point-per-slide” for the whole talk)

4.

Examples of good slide titles

The reason for meaningful slide titles is
convenience and clarity for the audience

“Why is the speaker telling me this again?”

(Why before what.)

Read your slide titles in thumbnail view
Do they make all the points of the story you are trying to tell?

Practice.

Even for a 10 minute class talk, practicing the talk out loud the
night before goes a lot way

5.

Trends in real-time ray tracing

D3D12 Ray Tracing
Support

Examples
▪ https://www.youtube.com/watch?v=LXo0WdlELJk

▪ UE4 Reflections
- https://www.youtube.com/watch?v=lMSuGoYcT3s

▪ AtomicHeart Demo
- https://www.youtube.com/watch?v=1IIiQZw_p_E

https://www.youtube.com/watch?v=LXo0WdlELJk
https://www.youtube.com/watch?v=lMSuGoYcT3s
https://www.youtube.com/watch?v=1IIiQZw_p_E

Rasterization and ray casting are two
algorithms for solving the same problem:

determining “visibility from a camera”

Visibility problem

Question 1: what samples does the triangle overlap?
(“coverage”)

Question 2: what triangle is closest to the
camera in each sample? (“occlusion”)

Sample

The visibility problem
▪ What scene geometry is visible at each screen sample?

- What scene geometry projects into a screen pixel? (coverage)

- Which geometry is visible from the camera at that pixel? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

x/z
-z axis

x-axis

Basic rasterization algorithm
Sample = 2D point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)
Occlusion: depth buffer
initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color[] // store scene color for all samples
for each triangle t in scene: // loop 1: triangles
 t_proj = project_triangle(t)
 for each 2D sample s in frame buffer: // loop 2: visibility samples
 if (t_proj covers s)
 compute color of triangle at sample
 if (depth of t at s is closer than z_closest[s])
 update z_closest[s] and color[s]

“Given a triangle, find the samples it covers”
(finding the samples is relatively easy since they are
distributed uniformly on screen)

Stanford CS348K, Fall 2018

Depth buffer example

The visibility problem (described differently)
▪ In terms of casting rays from a simulated camera:

- What scene primitive is “hit” by a ray originating from a point on the virtual
sensor and traveling through the aperture of the pinhole camera? (coverage)

- What primitive is the first hit along that ray? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

o,do,d

Basic ray casting algorithm
Sample = a ray in 3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray
initialize color[] // store scene color for all samples
for each sample s in frame buffer: // loop 1: visibility samples (rays)
 r = ray from s on sensor through pinhole aperture
 r.min_t = INFINITY // only store closest-so-far for current ray
 r.tri = NULL;
 for each triangle tri in scene: // loop 2: triangles
 if (intersects(r, tri)) { // 3D ray-triangle intersection test
 if (intersection distance along ray is closer than r.min_t)
 update r.min_t and r.tri = tri;
 }
 color[s] = compute surface color of triangle r.tri at hit point

Compared to rasterization approach: just a reordering of the loops! (+ math in 3D)
“Given a ray, find the closest triangle it hits”

The brute force “for each triangle” loop is typically implemented using a search acceleration
structure. (A rasterizer’s “for each sample” inner loop is not just a loop over all screen
samples either.)

Stanford CS348K, Fall 2018 8

C D

B

Bounding volume hierarchy (BVH)

A

A
B

C

D

▪ Leaf nodes:
- Contain small list of primitives

▪ Interior nodes:
- Proxy for a large subset of primitives
- Stores bounding box for all primitives in subtree

Stanford CS348K, Fall 2018 8

Bounding volume hierarchy (BVH)

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

A

B

C

D E

F G

A

B C

D E F G
1,2,3

4,5
6,7,8,

9,10,11
12,13,14,
15, 16,17

18,19,20,
21,22

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

AB C

D E

F G

A

B C

D F E G
1,2,3

4,5
6,7,8,

9,10,11
12,13,14,
15,16,17

18,19,20,
21,22

Left: two different BVH
organizations of the same
scene containing 22
primitives.

Is one BVH better than the
other?

Stanford CS348K, Fall 2018 8

Ray-scene intersection using a BVH
struct BVHNode {
 bool leaf; // true if node is a leaf
 BBox bbox; // min/max coords of enclosed primitives
 BVHNode* child1; // “left” child (could be NULL)
 BVHNode* child2; // “right” child (could be NULL)
 Primitive* primList; // for leaves, stores primitives
};

struct HitInfo {
 Primitive* prim; // which primitive did the ray hit?
 float t; // at what t value along ray?
};

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {
 HitInfo hit = intersect(ray, node->bbox); // test ray against node’s bounding box
 if (hit.prim == NULL || hit.t > closest.t))
 return; // don’t update the hit record

 if (node->leaf) {
 for (each primitive p in node->primList) {
 hit = intersect(ray, p);
 if (hit.prim != NULL && hit.t < closest.t) {
 closest.prim = p;
 closest.t = t;
 }
 }
 } else {
 find_closest_hit(ray, node->child1, closest);
 find_closest_hit(ray, node->child2, closest);
 }}

How could this occur?

node

child1
child2

Recall: rendering as a triple for-loop
Naive “rasterizer”:
initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color[] // store scene color for all samples
for each triangle t in scene: // loop 1: triangles
 t_proj = project_triangle(t)
 for each sample s in frame buffer: // loop 2: visibility samples
 if (t_proj covers s)
 for each light l in scene: // loop 3: lights
 accumulate contribution of light l to surface appearance
 if (depth of t at s is closer than z_closest[s])
 update z_closest[s] and color[s]

Naive “ray caster”:
initialize color[] // store scene color for all samples
for each sample s in frame buffer: // loop 1: visibility samples (rays)
 ray r = ray from s through pinhole aperture out into scene
 r.closest = INFINITY // only store closest-so-far for current ray
 r.triangleId = NULL;
 for each triangle t in scene: // loop 2: triangles
 if (intersects(r, t)) { // 3D ray-triangle intersection test
 if (intersection distance along ray is closer than r.closest)
 update r.closest and r.triangleId = t;
 }
 for each light l in scene: // loop 3: lights
 accumulate contribution of light l to appearance of intersected surface r.triangleId
 color[s] = surface color of r.triangleId at hit point;

Basic rasterization vs. basic ray casting
▪ Basic rasterization:

- Stream over triangles in order (never have to store in entire scene, naturally
supports unbounded size scenes)

- Store depth buffer (need random access to regular structure of fixed size)

▪ Ray casting:
- Stream over screen samples (rays)

- Never have to store closest depth so far for the entire screen (just current ray)
- Natural order for rendering transparent surfaces (process surfaces in the order

the are encountered along the ray: front-to-back or back-to-front)
- Must store entire scene (random access to irregular structure of variable size:

depends on complexity and distribution of scene)

Ray-scene intersection is a general visibility primitive
What object is visible along this ray?

Virtual
Sensor

(x,z)

What object is visible to the camera?

What light sources are visible from a point
on a surface (Is a surface in shadow?)

What reflection is visible on a surface?

Stanford CS348K, Fall 2018

Direct illumination + reflection + transparency
Image credit: Henrik Wann Jensen

Stanford CS348K, Fall 2018

Global illumination solution
Image credit: Henrik Wann Jensen

Stanford CS348K, Fall 2018

Direct illumination

p

Stanford CS348K, Fall 2018

Sixteen-bounce global illumination

p

Sampling light paths

Image credit: Wann Jensen, Hanrahan

Another way to think about rasterization
▪ Rasterization is an optimized visibility algorithm for batches

of rays with specific properties
- Assumption 1: Rays have the same origin

- Assumption 2: Rays are uniformly distributed (across image plane… not
uniformly distributed in angle)

Stanford CS348K, Fall 2018 8

Another way to think about rasterization
▪ Rasterization is a efficient implementation of ray casting where:

- Scene intersection results for a batch of rays are computed at a time
- All rays originate from same origin
- Projection of rays distributed uniformly in plane of projection

(Note: not uniform distribution in angle… angle between rays is smaller away from view direction)

Shadow mapping: ray origin need not be the
scene’s camera position
- Place ray origin at position of a point light source
- Render scene to compute depth to closest object to light along uniformly

distributed “shadow rays” (answer stored in depth buffer)
- Store precomputed shadow ray intersection results in a texture

Image credits: Segal et al. 92, Cass Everitt

Shadow rays
“Shadow map” = depth map from perspective of a point light.
(Store closest intersection along each shadow ray in a texture map)

[Williams 78]

Result of shadow texture lookup approximates
visibility result when shading fragment at x’

x

x’

x’’ Shadow rays cached in shadow map shown in red:
Distance to closest object in scene is precomputed
and stored in texture map (“shadow map”)

Image credit: Johnson et al. TOG 2005

Shadows computed using shadow map

Correct hard shadows
(result from computing v(x’,x’’) directly using ray tracing)

Shadow aliasing due to shadow map undersampling

Rasterization: ray origin need not be camera position
Environment mapping:
place ray origin at reflective object

Yields approximation to true
reflection results. Why?

Image credit: http://en.wikipedia.org/wiki/Cube_mapping

Scene rendered 6 times, with ray
origin at center of reflective box
(produces “cube-map”)

Center of projection

Cube map:
stores results of approximate mirror reflection rays

(Question: how can a glossy surface be rendered
using the cube-map)

Why real-time ray tracing?

Why ray tracing
▪ Accurate lighting/shading effects

- Correct reflections from surfaces surfaces
- Correct shadows (no aliasing)
- Soft shadows
- Ambient occlusion
- “Global illumination” (multiple bounces)

▪ Software simplicity
- Many effects created from a single primitive (traceRay())
- This is was the “killer reason” to move to ray tracing for film

rendering

Technologies that are making RTRT possible

▪ Better algorithms: fast parallel BVH construction and traversal
algorithms (SIGGRAPH/HPG circa 2010)

▪ GPU hardware evaluation:
- Faster GPUs, sufficient amounts of DRAM
- Increasingly flexible aspects of traditional GPU pipeline

(bindless textures/resources)

▪ DNN-based image denoising
- Can make plausible images using small number of rays per pixel
- Make use of DNN hardware acceleration

Sampling noise

Stanford CS348K, Fall 2018

One sample per pixel

Stanford CS348K, Fall 2018

32 samples per pixel

Stanford CS348K, Fall 2018

1024 samples per pixel

Example: NVIDIA Optix denoiser
▪ https://developer.nvidia.com/optix-denoiser

https://developer.nvidia.com/optix-denoiser

Traditional graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

Output image buffer

Keep in mind
▪ An application developer has always been able to write a ray

tracer in CUDA

▪ So the ability to use a GPU to perform ray tracing is nothing new

▪ So why a new API?

D3D12’s DXR ray tracing “stages”
▪ TraceRay is a blocking function

Acceleration
structure

Can call TraceRay()

Can call TraceRay()

Can call TraceRay()

GPU understands format of BVH
acceleration structure and “shader table”

Surprising synergies

▪ New GPU hardware for ray-
tracing operations

▪ But ray tracing still too
expensive for noise-free images
in real-time

▪ Tensor core: specialized
hardware for accelerated DNN
computations
(that can be used to perform
sophisticated denoising)

Summary
▪ Ray tracing is an elegant, general purpose algorithm for

rendering realistic images
- Simple: single operation for many effects

▪ Challenge = high cost: must trace large number of rays per
pixel to reduce noise in rendered images

▪ Solutions:
- Hardware for ray-tracing specific operations
- Hardware for DNN acceleration used to implement new

fast denoising operations

