Lecture 19:

Systems Trends in Real-Time Ray Tracing + Course Review

Visual Computing Systems Stanford CS348K, Fall 2018

Presentations: next Tuesday

- 10-minute slots per project group
- Aim for eight minutes of speaking + 2 minutes discussion
- Key goal of the presentation:
 - Tell the class:
 - What the problem was (goals and constraints)
 - What the most interesting part of the project was ("The challenging part was how we solved...")
 - Provide a clear piece of evidence that your goals were achieved ("here is our graph of performance vs...")

Stanford CS348K, Fall 2018

A few clear talk tips

For a full treatment see: http://graphics.stanford.edu/~kayvonf/misc/cleartalktips.pdf

Stanford CS348K, Fall 2018

1.

Establish inputs, outputs, and constraints (goals and assumptions)

Establish goals and assumptions early

- Given these inputs, we wish to generate these outputs
- We are working under the following constraints
 - **Example: the outputs should have these properties**
 - Example: the algorithm...
 - Should be real-time
 - Should be parallelizable
 - Cannot require artist intervention
 - Must be backward compatible with this content creation pipeline

Your contribution is typically a system or algorithm that meets the stated goals under the stated constraints.

2.

Always, always, always explain any figure or graph

(the audience does not want to think about things you can tell them)

Explain every figure

- Explain every visual element used in the figure (don't make the audience decode a figure)
- Refer to highlight colors explicitly (explain why the visual element is highlighted)

Multi-sample locations

Example voice over: "Here I'm showing you a pixel grid, a projected triangle, and the location of four sample points at each pixel. Sample points falling within the triangle are colored red.

Explain every figure

- Lead the listener through the key points of the figure
- Useful phrase: "As you can see..."
 - It's like verbal eye contact. It keeps the listener engaged and makes the listener happy... "Oh yeah, I can see that! I am following this talk!"

Pixels at triangle boundaries are shaded multiple times

Example voice over: "Now I'm showing you two adjacent triangles, and I'm coloring pixels according to the number of shading computations that occur at each pixel as a result of rendering these two triangles. <u>As you can see</u> from the light blue region, pixels near the boundary of the two triangles get shaded twice.

Explain every results graph

- May start with a general intro of what the graph will address (anticipate result)
- Then describe the axes (and your axes better have labels!)
- Then describe the <u>one point</u> that you wish to make with this results slide (more on this later!)

Example voice over: "Our first questions were about performance: how much did merging reduce the number of the shaded quad fragments? And we found out that the answer is a lot. This figure plots the number of shading computations per pixel when rendering different tessellations of the big guy scene. X-axis gives triangle size. If you look at the left side of the graph, which corresponds to a high-resolution micropolygon mesh, you can see that merging, shown by yellow line, shades over eight times less than the convention pipeline.

3. In the results section: **One point per slide! One point per slide! One point per slide!**

(and the point is the title of the slide!!!)

Place the point of the slide in the title:

- Provide audience context for interpreting the graph ("Let me see if I can verify that point in the graph to check my understanding")

Corollary to the one point per slide rule

- In general, you don't want to show data on a results slide that is unrelated to the point of the slide
- This usually means you need to remake the graphs from your paper (it's a pain, but sorry, it's important) *

* This is an example of a tip for conference talk polish: not necessary for class talks

Bad examples of results slides

these graphs

You just want to be told what to look for

Simulation Results : RGS

RGS Performance

- 147-198 Mray/sec
- Texture cache concerns : Mip-mapping & Compression

	Ray	Cache hit rate (%)		Bandwidth	Performance	
Test scene	type	Texture	Data	(GB/s)	(Mrays/sec)	
Sibenik	Primary	-	96.76	0.5	182.11	
(80K tri.)	FSR	-	91.24	1.9	172.25	
Fairy	Primary	93.25	96.87	0.8	175.66	
(179K tri.)	FSR	81.49	94.91	1.9	147.45	
Ferrari	Primary	86.12	98.09	0.6	183.28	
(210K tri.)	FSR	75.95	95.71	2.0	163.67	
Conference	Primary	-	98.44	0.2	198.32	
(282K tri.)	FSR	-	95.72	0.8	158.79	

Notice how you (as an audience member) are working hard to interpret the trends in

- You are asking: what do these results say?

4

Titles matter.

If you read the titles of your talk all the way through, it should be a great summary of the talk.

(basically, this is "one-point-per-slide" for the whole talk)

Examples of good slide titles

GPUs shade quad fragments (2x2 pixel blocks)

Texture data

Quad fragment

use differences between neighboring texture coordinates to estimate derivatives

AAC IS AN APPROXIMATION TO THE TRUE AGGLOMERATIVE CLUSTERING SOLUTION.

(Why before what.)

Greedy SRDH build optimizes over partitions and traversal policies

SAH:

forall (partitions in set-of-partitions) ...evaluate SAH and pick min ...

SRDH:

forall (partitions in set-of-partitions) forall (traversalKernels in set-of-kernels) ...evaluate SRDH and pick min ...

SRDH(R,L, κ ,r)=(1- κ (r)H(L,r))|R|+(1- κ (r)H(R,r))|L|

51

The reason for meaningful slide titles is convenience and clarity for the audience

"Why is the speaker telling me this again?"

Read your slide titles in thumbnail view

Do they make all the points of the story you are trying to tell?

Indexendence are noted for scatter formationIndex definitionIndex definitionIndex definition7691010101010111111101211111013141516141516161516161610101010101010101010101010101010111415161210101013141516141516161516161610101010102021222610202120212010202120212021102021202120212010202120212021202120102021202120212021202120212021202120212021202120212021202120212021212121212121212121212121212121212121 </th <th>Reducing Shading on GPUs using Quad-Fragment Merging Parter Baselos James Hegarty Jueted University Milliam R. Mark Herry Horesten Wow</th> <th>High-resolution meshes are appearing in games</th> <th>High-resolution meshes are appearing in games</th> <th>PROBLEM Current GPUs shade small triangles inefficient</th>	Reducing Shading on GPUs using Quad-Fragment Merging Parter Baselos James Hegarty Jueted University Milliam R. Mark Herry Horesten Wow	High-resolution meshes are appearing in games	High-resolution meshes are appearing in games	PROBLEM Current GPUs shade small triangles inefficient	
Link is taiged is under the method and method and input is its and is a set in the method and its and i	Surface derivatives are needed for texture filtering Texture data	GPUs shade quad fragments (2x2 pixel blacks) Tester Mix Duff	Shaded quad fragments	Final pixel values	
Rasterized quade fragment: First encide quade fragments: First encide quade fragment: First encide duces: <th duces:<="" encide="" t<="" th=""><th>Pixels at triangle boundaries are shaded multiple times Surfige sequencies properties Defined on the state of the state</th><th>Small triangles result in extra shading Werd version Ward version Werd version Ward version Ward version Ward version</th><th>Goal: Shade high-resolution meshes (not individual triangles) approximately once par pixel Approach: Evolve GPU's quad-fragment shading system (Provide smooth evolution from status que) Introduce devote law in tab. (or level during there also monordy monordy monordy)</th><th>QUAD-FRAGMENT MERGING</th></th>	<th>Pixels at triangle boundaries are shaded multiple times Surfige sequencies properties Defined on the state of the state</th> <th>Small triangles result in extra shading Werd version Ward version Werd version Ward version Ward version Ward version</th> <th>Goal: Shade high-resolution meshes (not individual triangles) approximately once par pixel Approach: Evolve GPU's quad-fragment shading system (Provide smooth evolution from status que) Introduce devote law in tab. (or level during there also monordy monordy monordy)</th> <th>QUAD-FRAGMENT MERGING</th>	Pixels at triangle boundaries are shaded multiple times Surfige sequencies properties Defined on the state of the state	Small triangles result in extra shading Werd version Ward version Werd version Ward version Ward version Ward version	Goal: Shade high-resolution meshes (not individual triangles) approximately once par pixel Approach: Evolve GPU's quad-fragment shading system (Provide smooth evolution from status que) Introduce devote law in tab. (or level during there also monordy monordy monordy)	QUAD-FRAGMENT MERGING
Merging quad fragments were were were were were were were were	Rasterized quad-fragment	Rasterized quad fragments	GPU pipeline: triangle connectivity is known	Pipeline with quad-fragment merging → → → → → → → → → → → → → → → → → → →	
Naive merging results in aliasing Avoid merging across discontinuities inspire across discontinuitis inspire across discontinuitie	Merging quad fragments Net heavier Net hea	Merging quad fragments Merk brangis Merk brangis Merging duad fragments Merging duad fragments Me	Merging quad fragments Merging quad fragments Mergin	Two key merging operations 1. Identifying when quad fragments can be merged 2. Constructing a merged quad fragment	
21 22 22 24	Naire merging results in aliasing Implement Implement Implement Implement Implement	Avoid merging across discontinuities Rathrange Market 1,2 date table Market 1,3 date table Market 1,4 Market 1,4 Market 1,5 Market 1,5 Marke	Conditions required to merge quad fragments 1. Same screen location 2. Same sidedness (triangles front facing or back facing) 3. Source triangles are adjacent in the mesh	High-frequency geometric detail may cause aliasin • Our merging rules are designed for real-time performan - Limit shading casts - Geometry shedd be pre-filtered to avoid alsoing 2.4	

5. Practice.

Even for a 10 minute class talk, practicing the talk <u>out loud</u> the night before goes a lot way

Trends in real-time ray tracing

D3D12 Ray Tracing Support

Examples

https://www.youtube.com/watch?v=LXoOWdIELJk

UE4 Reflections

- <u>https://www.youtube.com/watch?v=IMSuGoYcT3s</u>

AtomicHeart Demo

- <u>https://www.youtube.com/watch?v=1lliQZw_p_E</u>

Rasterization and ray casting are two algorithms for solving the same problem: determining "visibility from a camera"

Visibility problem

The visibility problem

What scene geometry is visible at each screen sample?

- What scene geometry projects into a screen pixel? (coverage)
- Which geometry is visible from the camera at that pixel? (occlusion)

Basic rasterization algorithm

Sample = 2D point

Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point) Occlusion: depth buffer

<pre>initialize z_closest[] to INFINITY</pre>	//	store	c]	.osest
initialize color[]	//	store	SC	ene o
for each triangle t in scene:	//	loop	1:	trian
t_proj = project_triangle(t)				
for each 2D sample s in frame buffer:	//	loop	2:	visib
if (t_proj covers s)				
compute color of triangle at sampl	e			
if (depth of t at s is closer than	Z_(closes	t[s	;])
upuate z_crosest[s] and coron[2]			

"Given a triangle, <u>find</u> the samples it covers"

(finding the samples is relatively easy since they are distributed uniformly on screen)

t-surface-so-far for all samples color for all samples gles

pility samples

•	•	•	•	•	•		•	•	•
•	•	•	•	•	•		•	•	•
•	•	•	•	•	/	•	X	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•		•	•	•	k	•
•	•	•	•/	•	•	•	•	•	•
•	•	•		•	•	•	•	•	\mathbf{k}
•	•	4	•	•	•	•	•	•	
•	•	•	•	•		-	•	•	•
•	4	•	•	•	•	•	•	•	•

Depth buffer example

Stanford CS348K, Fall 2018

The visibility problem (described differently)

In terms of casting rays from a simulated camera:

- What scene primitive is "hit" by a ray originating from a point on the virtual sensor and traveling through the aperture of the pinhole camera? (coverage)
- What primitive is the first hit along that ray? (occlusion)

Basic ray casting algorithm

Sample = a ray in 3D

Coverage: 3D ray-triangle intersection tests (does ray "hit" triangle) Occlusion: closest intersection along ray

```
initialize color[]
for each sample s in frame buffer:
    r = ray from s on sensor through pinhole aperture
    r.min_t = INFINITY
    r.tri = NULL;
    for each triangle tri in scene:
                                                     // loop 2: triangles
        if (intersects(r, tri)) {
            if (intersection distance along ray is closer than r.min_t)
                update r.min_t and r.tri = tri;
        }
    color[s] = compute surface color of triangle r.tri at hit point
```

Compared to rasterization approach: just a reordering of the loops! (+ math in 3D) "Given a ray, find the closest triangle it hits"

The brute force "for each triangle" loop is typically implemented using a search acceleration structure. (A rasterizer's "for each sample" inner loop is not just a loop over all screen samples either.)

// store scene color for all samples // loop 1: visibility samples (rays)

// only store closest-so-far for current ray

// 3D ray-triangle intersection test

Bounding volume hierarchy (BVH)

Leaf nodes:

- Contain *small* list of primitives
- Interior nodes:
 - Proxy for a *large* subset of primitives
 - Stores bounding box for all primitives in subtree

Bounding volume hierarchy (BVH)

Left: two different BVH organizations of the same scene containing 22 primitives.

Is one BVH better than the other?

Ray-scene intersection using a BVH

```
struct BVHNode {
   bool leaf; // true if node is a leaf
   BBox bbox; // min/max coords of enclosed primitives
   BVHNode* child1; // "left" child (could be NULL)
   BVHNode* child2; // "right" child (could be NULL)
   Primitive* primList; // for leaves, stores primitives
};
```

```
struct HitInfo {
  Primitive* prim; // which primitive did the ray hit?
  float t; // at what t value along ray?
};
```

```
void find closest hit(Ray* ray, BVHNode* node, HitInfo* closest) {
   HitInfo hit = intersect(ray, node->bbox); // test ray against node's bounding box
   if (hit.prim == NULL || hit.t > closest.t))
     return; // don't update the hit record
```

```
if (node->leaf) {
   for (each primitive p in node->primList) {
      hit = intersect(ray, p);
      if (hit.prim != NULL && hit.t < closest.t) {</pre>
         closest.prim = p;
         closest.t = t;
      }
} else {
   find closest hit(ray, node->child1, closest);
   find closest hit(ray, node->child2, closest);
}}
```


How could this occur?

Recall: rendering as a triple for-loop

Naive "rasterizer":

<pre>initialize z_closest[] to INFINITY</pre>	<pre>// store closest</pre>
initialize color[]	// store scene c
for each triangle t in scene:	// loop 1: trian
<pre>t_proj = project_triangle(t)</pre>	
for each sample s in frame buffer:	// loop 2: visib
<pre>if (t_proj covers s)</pre>	
for each light l in scene:	// loop 3: lig
accumulate contribution of	light l to surface a
if (depth of t at s is closer t	han z_closest[s])
update z_closest[s] and col	or[s]

Naive "ray caster":

<pre>initialize color[] // stor</pre>	e sce
<pre>for each sample s in frame buffer: // loop</pre>	1: v
ray r = ray from s through pinhole aperture out into s	cene
r.closest = INFINITY // only	stor
r.triangleId = NULL;	
<pre>for each triangle t in scene: // loop</pre>	2: 1
<pre>if (intersects(r, t)) { // 3D r</pre>	ay-tı
if (intersection distance along ray is closer	than
update r.closest and r.triangleId = t;	
}	
for each light l in scene: // loop	3: 3
accumulate contribution of light l to appearance o color[s] = surface color of r.triangleId at hit point;	f int

-surface-so-far for all samples olor for all samples gles

ility samples

hts

ppearance

ene color for all samples
visibility samples (rays)

re closest-so-far for current ray

triangles

riangle intersection test

r.closest)

lights

tersected surface r.triangleId

Basic rasterization vs. basic ray casting

Basic rasterization:

- **Stream over triangles** in order (never have to store in entire scene, naturally supports unbounded size scenes)
- Store depth buffer (need *random access to regular structure of fixed size*)

Ray casting:

- Stream over screen samples (rays)
 - Never have to store closest depth so far for the entire screen (just current ray)
 - Natural order for rendering transparent surfaces (process surfaces in the order the are encountered along the ray: front-to-back or back-to-front)
- Must store entire scene (*random access to irregular structure of variable size*: depends on complexity and distribution of scene)

Ray-scene intersection is a general visibility primitive What object is visible along this ray?

What object is visible to the camera?

What light sources are visible from a point on a surface (Is a surface in shadow?)

What reflection is visible on a surface?

Direct illumination + reflection + transparency

Image credit: Henrik Wann Jensen

HENRIK WANN JENSEN 1999

Global illumination solution

Image credit: Henrik Wann Jensen

HENRIK WANN JENSEN 200

Direct illumination

Sixteen-bounce global illumination

12 DE2222222222222222222222222

Sampling light paths

Image credit: Wann Jensen, Hanrahan

Another way to think about rasterization

- **Rasterization is an optimized visibility algorithm for batches** of rays with specific properties
 - Assumption 1: Rays have the same origin
 - Assumption 2: Rays are uniformly distributed (across image plane... not uniformly distributed in angle)

Another way to think about rasterization

- **Rasterization is a efficient implementation of ray casting where:**
 - Scene intersection results for a batch of rays are computed at a time
 - All rays originate from same origin
 - Projection of rays distributed uniformly in plane of projection (Note: not uniform distribution in angle... angle between rays is smaller away from view direction)

Shadow mapping: ray origin need not be the scene's camera position [Williams 78]

- Place ray origin at position of a point light source
- Render scene to compute depth to closest object to light along uniformly distributed "shadow rays" (answer stored in depth buffer)
- Store precomputed shadow ray intersection results in a texture

Result of shadow texture lookup approximates visibility result when shading fragment at x'

Shadow aliasing due to shadow map undersampling

Shadows computed using shadow map

Correct hard shadows (result from computing v(x',x") directly using ray tracing)

Image credit: Johnson et al. TOG 2005

Image credit: http://en.wikipedia.org/wiki/Cube_mapping

Why real-time ray tracing?

Why ray tracing

- Accurate lighting/shading effects
 - Correct reflections from surfaces surfaces
 - Correct shadows (no aliasing)
 - Soft shadows
 - Ambient occlusion
 - "Global illumination" (multiple bounces)
- Software simplicity
 - Many effects created from a single primitive (traceRay())
 - This is was the "killer reason" to move to ray tracing for film rendering

Technologies that are making RTRT possible

- Better algorithms: fast parallel BVH construction and traversal algorithms (SIGGRAPH/HPG circa 2010)
- **GPU hardware evaluation:**
 - Faster GPUs, sufficient amounts of DRAM
 - Increasingly flexible aspects of traditional GPU pipeline (bindless textures/resources)
- **DNN-based image denoising**
 - Can make plausible images using small number of rays per pixel
 - Make use of DNN hardware acceleration

Sampling noise

One sample per pixel

32 samples per pixel

1024 samples per pixel

Example: NVIDIA Optix denoiser

<u>https://developer.nvidia.com/optix-denoiser</u>

Traditional graphics pipeline

Memory

Keep in mind

- An application developer has always been able to write a ray tracer in CUDA
- So the ability to use a GPU to perform ray tracing is nothing new
- So why a new API?

D3D12's DXR ray tracing "stages"

TraceRay is a blocking function

GPU understands format of BVH acceleration structure and "shader table"

Shader Table

Surprising synergies

- New GPU hardware for raytracing operations
- But ray tracing still too expensive for noise-free images in real-time
- Tensor core: specialized hardware for accelerated DNN computations
 (that can be used to perform sophisticated denoising)

Summary

- Ray tracing is an elegant, general purpose algorithm for rendering realistic images
 - Simple: single operation for many effects
- Challenge = high cost: must trace large number of rays per pixel to reduce noise in rendered images

Solutions:

- Hardware for ray-tracing specific operations
- Hardware for DNN acceleration used to implement new fast denoising operations