Lecture 19:

Systems Trends in Real-Time Ray Tracing
+ Course Review

Visual Computing Systems
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Presentations: next Tuesday

® 10-minute slots per project group
m Aim for eight minutes of speaking + 2 minutes discussion
B Key goal of the presentation:
- Tell the class:
- What the problem was (goals and constraints)

- What the most interesting part of the project was (“The
challenging part was how we solved...")

- Provide a clear piece of evidence that your goals were
achieved (“here is our graph of performance vs...")
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A few clear talk tips

For a full treatment see:
http://graphics.stanford.edu/~kayvonf/misc/cleartalktips.pdf
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1.

Establish inputs, outputs, and constraints
(goals and assumptions)



Establish goals and assumptions early

m Given these inputs, we wish to generate these outputs
m We are working under the following constraints
- Example: the outputs should have these properties
- Example: the algorithm...

= Should be real-time
= Should be parallelizable
- Cannot require artist intervention

= Must be backward compatible with this content creation pipeline

Your contribution is typically a system or algorithm that meets the
stated goals under the stated constraints.



2.

Always, always, always
explain any figure or graph

(the audience does not want to think about things you can tell them)



Explain every figure

® Explain every visual element used in the figure (don't make the audience decode a figure)

m Refer to highlight colors explicitly (explain why the visual element is highlighted)

Multi-sample locations [Akeley 93]

Sample coverage multiple times per pixel (for anti-aliased edges)

Example voice over: “Here I'm showing you a pixel grid, a projected triangle, and the location of four sample points
at each pixel. Sample points falling within the triangle are colored red.



Explain every figure

B Lead the listener through the key points of the figure

B Useful phrase: “As you can see...”

- It’s like verbal eye contact. It keeps the listener engaged and makes the listener happy... “Oh yeah, | can see
that! | am following this talk!”

Pixels at triangle boundaries are shaded multiple times

Shading computations per pixel

Example voice over: “Now I'm showing you two adjacent triangles, and I'm coloring pixels according to the number
of shading computations that occur at each pixel as a result of rendering these two triangles. As you can see from
the light blue region, pixels near the boundary of the two triangles get shaded twice.




Explain every results graph

B May start with a general intro of what the graph will address (anticipate result)
B Then describe the axes (and your axes better have labels!)
B Then describe the one point that you wish to make with this results slide (more on this later!)

Merging reduces total shaded quad fragments
1/2-pixel-area triangles: 8x reduction
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Example voice over: “Our first questions were about performance: how much did merging reduce the number of the shaded quad fragments?
And we found out that the answer is a lot. This figure plots the number of shading computations per pixel when rendering different
tessellations of the big guy scene. X-axis gives triangle size. If you look at the left side of the graph, which corresponds to a high-resolution
micropolygon mesh, you can see that merging, shown by yellow line, shades over eight times less than the convention pipeline.




3.

In the results section:
One point per slide!
One point per slide!
One point per slide!

(and the point is the title of the slide!!!)



Merging reduces total shaded quad fragments Merging reduces total shaded quad fragments
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B Place the point of the slide in the title:

- Provide audience context for interpreting the graph (“Let me see if | can verify that
point in the graph to check my understanding”)



Corollary to the one point per slide rule

B |ngeneral, you don't want to show data on a results slide that
is unrelated to the point of the slide

® This usually means you need to remake the graphs from your
paper (it’s a pain, but sorry, it’s important) *

* This is an example of a tip for conference talk polish: not necessary for class talks



Bad examples of results slides

Results (ICache + RF)
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® RGS Performance
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Ray Cache hit rate (%) | Bandwidth |Performance
Test scene | type Texture Data (GB/s) | (Mrays/sec)
Sibenik Primary 96.76 0.5 182.11
(80K tri.) FSR 91.24 1.9 172.25
Fairy Primary 03.25 06.87 0.8 175.66
(179K tr1.) | FSR 81.49 94.91 1.9 147.45
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(282K tri.) | FSR 05.72 0.8 158.79

® Notice how you (as an audience member)
are working hard to interpret the trends in

these graphs
- You are asking: what do these results say?

® You just want to be told what to look for
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4.

Titles matter.

If you read the titles of your talk all the way through, it should be a
great summary of the talk.

(basically, this is “one-point-per-slide” for the whole talk)



Examples of good slide titles

GPUs shade quad fragments (2x2 pixel blocks)

Texture data Quad fragment

(So0,t00)
°

®
(s10,10)

)
(s11,t11)

Greedy SRDH build optimizes over
partitions and traversal policies

SAH:

forall (partitions in set-of-partitions)
..evaluate SAH and pick min..

SRDH:
forall (partitions in set-of-partitions)
forall (traversalKernels in set-of-kernels)
..avaluate SRDH and pick min..

SRDH(R,L,kr)=(1- x(r)H(L,r))|R|+(1- k(r)H(R,r))|L|

use differences between neighboring
texture coordinates to estimate derivatives

AAC IS AN APPROXIMATION TO THE TRUE
AGGLOMERATIVE CLUSTERING SOLUTION.

Computation graph: Primitive partitioning:

@) (&
"

The reason for meaningful slide titles is
convenience and clarity for the audience

“Why is the speaker telling me this again?”

(Why before what.)



Read your slide titles in thumbnail view

Do they make all the points of the story you are trying to tell?
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J.

Practice.

Even for a 10 minute class talk, practicing the talk out loud the
night before goes a lot way




Trends in real-time ray tracing



D3D12 Ray Tracing
Support



Examples

B https://www.youtube.com/watch?v=LXoOWdIELJk

B UE4 Reflections
- https://www.youtube.com/watch?v=IMSuGoYcT3s

B AtomicHeart Demo
- https://www.youtube.com/watch?v=11liQZw_p_E



https://www.youtube.com/watch?v=LXo0WdlELJk
https://www.youtube.com/watch?v=lMSuGoYcT3s
https://www.youtube.com/watch?v=1IIiQZw_p_E

Rasterization and ray casting are two
algorithms for solving the same problem:
determining “visibility from a camera”




Visibility problem

Question 1: what samples does the triangle overlap?
(“coverage”)

Sample Question 2: what triangle is closest to the

camera in each sample? (“occlusion”)



The visibility problem

B What scene geometry is visible at each screen sample?

- What scene geometry projects into a screen pixel? (coverage)

- Which geometry is visible from the camera at that pixel? (occlusion)

Virtual
Sensor



Basic rasterization algorithm

Sample = 2D point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)
Occlusion: depth buffer

initialize z _closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color|] // store scene color for all samples
for each triangle t in scene: // loop 1: triangles

t_proj = project_triangle(t)

for each 2D sample s in frame buffer: // loop 2: visibility samples

if (t_proj covers s)
compute color of triangle at sample
if (depth of t at s is closer than z_closest[s])
update z _closest[s] and color|s]

“Given a triangle, find the samples it covers”
(finding the samples is relatively easy since they are
distributed uniformly on screen)




Depth buffer example
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The visibility problem (described differently)

B |nterms of casting rays from a simulated camera:

- What scene primitive is “hit” by a ray originating from a point on the virtual
sensor and traveling through the aperture of the pinhole camera? (coverage)

- What primitive is the first hit along that ray? (occlusion)

Camera
(0,0)

Virtual
Sensor



Basic ray casting algorithm

Sample=arayin 3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray

initialize color|] // store scene color for all samples
for each sample s in frame buffer: // loop 1: visibility samples (rays)
r = ray from s on sensor through pinhole aperture
r.min_t = INFINITY // only store closest-so-far for current ray
r.tri = NULL;
for each triangle tri in scene: // loop 2: triangles
if (intersects(r, tri)) { // 3D ray-triangle intersection test

if (intersection distance along ray is closer than r.min_t)
update r.min_t and r.tri = tri;

}

color[s] = compute surface color of triangle r.tri at hit point

Compared to rasterization approach: just a reordering of the loops! (+ math in 3D)
“Given a ray, find the closest triangle it hits”

The brute force “for each triangle” loop is typically implemented using a search acceleration
structure. (A rasterizer’s “for each sample” inner loop is not just a loop over all screen
samples either.)



Bounding volume hierarchy (BVH)

m Leaf nodes:
- Contain small list of primitives
B [nterior nodes:
- Proxy for a large subset of primitives
- Stores bounding box for all primitives in subtree

Stanford (S348K, Fall 2018 8



Bounding volume hierarchy (BVH)

Left: two different BVH
organizations of the same
scene containing 22
primitives.

/

N\ Is one BVH better than the
A other?
20 1

1,2,3 6,78, 12,13,14, 18,19,20, 1,2,3 6,7,8, 12,13,14, 18,19,20,
4,5 910,11 15,116,177 21,22 4,5 910,11 15,16,17 21,22

Stanford (S348K, Fall 2018 8



Ray-scene intersection using a BVH

struct BVHNode {
bool leaf; // true if node is a leaf
BBox bbox; // min/max coords of enclosed primitives D> hode
BVHNode* childl; // “left” child (could be NULL)
BVHNode* child2; // “right” child (could be NULL)
Primitive* primList; // for leaves, stores primitives 2

child2

Y
struct HitInfo { child1 Zﬁ&
Primitive* prim; // which primitive did the ray hit? tfgé

float t; // at what t value along ray?

void find closest hit(Ray* ray, BVHNode* node, HitInfo* closest) {
HitInfo hit = intersect(ray, node->bbox); // test ray against node’s bounding box
if (hit.prim == NULL || hit.t > closest.t))
return; // don’t update the hit record

if (node->leaf) {
for (each primitive p in node->primList) { .
hit = intersect(ray, p); How could this occur?
if (hit.prim != NULL && hit.t < closest.t) {
closest.prim = p;
closest.t = t;

}
} else {

find_closest_hit(ray, node->childl, closest);
find_closest_hit(ray, node->child2, closest);

}}
Stanford (S348K, Fall 2018 8



Recall: rendering as a triple for-loop

Naive “rasterizer”:

initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color|] // store scene color for all samples
for each triangle t in scene: // loop 1: triangles
t_proj = project_triangle(t)
for each sample s in frame buffer: // loop 2: visibility samples
if (t_proj covers s)
for each light 1 in scene: // loop 3: lights

if (depth of t at s is closer than z_closest[s])
update z _closest[s] and color|s]

Naive “ray caster”:

initialize color|] // store scene color for all samples
for each sample s in frame buffer: // loop 1: visibility samples (rays)
ray r = ray from s through pinhole aperture out into scene
r.closest = INFINITY // only store closest-so-far for current ray
r.triangleId = NULL;
for each triangle t in scene: // loop 2: triangles
if (intersects(r, t)) { // 3D ray-triangle intersection test

if (intersection distance along ray is closer than r.closest)
update r.closest and r.triangleld = t;

—
accumulate contribution of light 1 to appearance of intersected surface r.triangleld
color[s] = surface color of r.triangleld at hit point;



Basic rasterization vs. basic ray casting

m Basicrasterization:
- Stream over triangles in order (never have to store in entire scene, naturally
supports unbounded size scenes)
- Store depth buffer (need random access to reqular structure of fixed size)

m Ray casting:
- Stream over screen samples (rays)

- Never have to store closest depth so far for the entire screen (just current ray)

- Natural order for rendering transparent surfaces (process surfaces in the order
the are encountered along the ray: front-to-back or back-to-front)

- Must store entire scene (random access to irreqular structure of variable size:
depends on complexity and distribution of scene)



Ray-scene intersection is a general visibility primitive
What object is visible along this ray?

What object is visible to the camera?

What light sources are visible from a point
on a surface (Is a surface in shadow?)

What reflection is visible on a surface?

Virtual
Sensor
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Sampling light paths

Image credit: Wann Jensen, Hanrahan



Another way to think about rasterization

B Rasterization is an optimized visibility algorithm for batches
of rays with specific properties

- Assumption 1: Rays have the same origin

- Assumption 2: Rays are uniformly distributed (across image plane... not
uniformly distributed in angle)



Another way to think about rasterization

m Rasterization is a efficient implementation of ray casting where:
- Scene intersection results for a batch of rays are computed at a time
- All rays originate from same origin

- Projection of rays distributed uniformly in plane of projection
(Note: not uniform distribution in angle. .. angle between rays is smaller away from view direction)
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Shadow mapping: ray origin need not be the
scene’s camera position wiinss

- Place ray origin at position of a point light source

- Render scene to compute depth to closest object to light along uniformly
distributed “shadow rays” (answer stored in depth buffer)

- Store precomputed shadow ray intersection results in a texture

Shadow rays
“Shadow map” = depth map from perspective of a point light.

(Store closest intersection along each shadow ray in a texture map)

Light

Image credits: Segal et al. 92, Cass Everitt



Result of shadow texture lookup approximates
visibility result when shading fragment at x’

Shadow rays cached in shadow map shown in red:
Distance to closest object in scene is precomputed
and stored in texture map (“shadow map”)




Shadow aliasing due to shadow map undersampling

Shadows computed using shadow map

Correct hard shadows
(result from computing v(x,x") directly using ray tracing)

Image credit: Johnson et al. T0G 2005



Rasterization: ray origin need not be camera position

Environment mapping: Scene rendered 6 times, with ray
pla(e ray Orig in at reflective ObjECt origin at center of reflective box

(produces “cube-map”)

Yields approximation to true
reflection results. Why?

Cubemap: -
stores results of approximate mirror reflection rays

(Question: how can a glossy surface be rendered
using the cube-map)

Center of projection

Image credit: http://en.wikipedia.org/wiki/Cube_mapping



Why real-time ray tracing?



Why ray tracing

m Accurate lighting/shading effects
- Correct reflections from surfaces surfaces
- Correct shadows (no aliasing)
- Soft shadows
- Ambient occlusion
- “Global illumination” (multiple bounces)

m Software simplicity
- Many effects created from a single primitive (traceRay())

- This is was the “killer reason” to move to ray tracing for film
rendering



Technologies that are making RTRT possible

m Better algorithms: fast parallel BVH construction and traversal
algorithms (SIGGRAPH/HPG circa 2010)

m GPU hardware evaluation:
- Faster GPUs, sufficient amounts of DRAM

- Increasingly flexible aspects of traditional GPU pipeline
(bindless textures/resources)

® DNN-based image denoising
- Can make plausible images using small number of rays per pixel

- Make use of DNN hardware acceleration



Sampling noise
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Example: NVIDIA Optix denoiser

m https://developer.nvidia.com/optix-denoiser
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https://developer.nvidia.com/optix-denoiser

Traditional graphics pipeline

Vertices

Primitives

Fragments

Pixels

I

Vertex Generation C——

l
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Memory
Uniform Texture
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Rasterization

(Fragment Generation)
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Frame-Buffer Ops +——>

Uniform Texture
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Uniform Texture
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Output image buffer




Keep in mind

m An application developer has always been able to write a ray
tracer in CUDA

B So the ability to use a GPU to perform ray tracing is nothing new

m Sowhyanew API?



D3D12’s DXR ray tracing “stages”

m TraceRay is a blocking function

[ Ray Generation J Pl e
structure
TraceRay() h
- y N [ Any Hit J Can call TraceRay()
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GPU understands format of BVH
acceleration structure and “shader table”
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Surprising synergies

m  New GPU hardware for ray-
tracing operations

®  But ray tracing still too
expensive for noise-free images
in real-time

m Tensor core: specialized
hardware for accelerated DNN
computations

(that can be used to perform
sophisticated denoising)

Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR

INT32 FP32 CORES

Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR

FP32 CORES

Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
INT32 FP32 CORES

Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR

INT32 FP32 CORES

96KB L1 Data Cache / Shared Memory

Tex

Tex

RT CORE




Summary

m Ray tracing is an elegant, general purpose algorithm for
rendering realisticimages

- Simple: single operation for many effects

m (Challenge = high cost: must trace large number of rays per
pixel to reduce noise in rendered images

m Solutions:
- Hardware for ray-tracing specific operations

- Hardware for DNN acceleration used to implement new
fast denoising operations



