
Visual Computing Systems
Stanford CS348K, Fall 2018

Lecture 18:

Mapping Shading Languages to GPU Hardware
ML Framework Discussion

A Quick Lecture on Rendering for VR

Stanford CS348K, Fall 2018

Shading system implementation
(Efficiently mapping shading computations to GPU hardware)

Stanford CS348K, Fall 2018

Shading often has very high arithmetic intensity
sampler mySamp;

Texture2D<float3> myTex;

float3 ks;

float shinyExp;

float3 lightDir;

float3 viewDir;

float4 phongShader(float3 norm, float2 uv)

{

 float result;

 float3 kd;

 kd = myTex.Sample(mySamp, uv);

 float spec = dot(viewDir, 2 * dot(-lightDir, norm) * norm + lightDir);

 result = kd * clamp(dot(lightDir, norm), 0.0, 1.0);

 result += ks * exp(spec, shinyExp);

 return float4(result, 1.0);

}

3 scalar float operations + 1 exp()
8 float3 operations + 1 clamp()
1 texture access

Vertex processing often has even higher arithmetic intensity than fragment
processing (less use of texturing)

Image credit: http://caig.cs.nctu.edu.tw/course/CG2007

Stanford CS348K, Fall 2018

Review: fictitious throughput processor

▪ Processor decodes one instruction per clock

▪ Instruction controls all eight SIMD execution units
- SIMD = “single instruction multiple data”

▪ “Explicit” SIMD:
- Vector instructions manipulate contents of 8x32-bit (256 bit) vector registers
- Execution is all within one hardware execution context

▪ “Implicit” SIMD (SPMD, “SIMT”):
- Hardware executes eight unique execution contexts in “lockstep”
- Program binary contains scalar instructions manipulating 32-bit registers

Fetch/
Decode

ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8

Stanford CS348K, Fall 2018

Mapping fragments to execution units:
Map fragments to “vector lanes” within one execution context (explicit SIMD parallelism)
or to unique contexts that share an instruction stream (parallelization by hardware)

Fetch/
Decode ALU ALU ALU ALU ALU ALU ALU ALU

V0

V1

VN
256 bits

Group of
fragments

Single
processor
execution

context
(with vector

registers)

Decode vector
instructions on
vector registers

Fetch/
Decode ALU ALU ALU ALU ALU ALU ALU ALU

V0

V1

VN

Group of
fragments

Eight processor
execution
contexts

(with 32-bit
scalar regs)

Decode scalar
instructions operating

on scalar registers

32
bits

Stanford CS348K, Fall 2018

GLSL/HLSL shading languages adopt a SPMD
programming model

▪ SPMD = single program, multiple data
- Programming model used in writing GPU shader programs

- What’s the program?

- What’s the data?

- Also adopted by CUDA and ISPC

▪ How do we implement a SPMD program on SIMD hardware?

Stanford CS348K, Fall 2018

Example 1: shader with a conditional
sampler mySamp;

Texture2D<float3> myTex;

float4 fragmentShader(float3 norm, float2 st, float4 frontColor, float4 backColor)

{

 float4 tmp;

 if (norm[2] < 0) // sidedness check (direction of Z component of normal)

 {

 tmp = backColor;

 }

 else

 {

 tmp = frontColor;

 tmp *= myTex.sample(mySamp, st);

 }

 return tmp;

}

Stanford CS348K, Fall 2018

Example 2: predicate is uniform expression
sampler mySamp;

Texture2D<float3> myTex;

float myParam; // uniform value

float myLoopBound;

float4 fragmentShader(float3 norm, float2 st, float4 frontColor, float4 backColor)

{

 float4 tmp;

 if (myParam < 0.5)

 {

 float scale = myParam * myParam;

 tmp = scale * frontColor;

 }

 else

 {

 tmp = backColor;

 }

 return tmp;

}

Notice:
predicate is uniform expression
(same result for all fragments)

Stanford CS348K, Fall 2018

Improved efficiency: processor executes uniform
instructions using scalar execution units

Fetch/
Decode

1 scalar or 1 vector

ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8

Scalar

Logic shared across all “vector lanes” need only be performed once (not
repeated by every vector ALU)
Scalar logic identified at compile time (compiler generates different instructions)

float3 lightDir[MAX_NUM_LIGHTS];

int numLights;

float4 multiLightFragShader(float3 norm, float4 surfaceColor)

{

 float4 outputColor;

 for (int i=0; i<num_lights; i++) {

 outputColor += surfaceColor * clamp(0.0, 1.0, dot(norm, lightDir[i]));

 }

}

Stanford CS348K, Fall 2018

Improving the fictitious throughput processor

▪ Now decode two instructions per clock
- How should we organize the processor to execute those instructions?

Fetch/
Decode

ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8Fetch/
Decode

Scalar

Hardware’s decode throughput:
two instructions per clock

Hardware’s execution throughput:
one scalar operation + 8-wide vector operation per clock

Stanford CS348K, Fall 2018

Three possible organizations

▪ Execute two instructions (one scalar, one vector) from same execution context
- One execution context can fully utilize the processor’s resources, but requires instruction-level-parallelism

in instruction stream

▪ Execute unique instructions in two different execution contexts
- Processor needs two runnable execution contexts (twice as much parallel work must be available)
- But no ILP in any instruction stream is required to run machine at full throughput

▪ Execute two SIMD operations in parallel (e.g., two 4-wide operations)
- Significant change: must modify how ALUs are controlled: no longer 8-wide SIMD
- Instructions could be from same execution context (ILP) or two different ones

Fetch/
Decode

ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8Fetch/
Decode

Scalar

Hardware’s decode throughput:
two instructions per clock

Hardware’s execution throughput:
one scalar operation + 8-wide vector operation per clock

Stanford CS348K, Fall 2018

NVIDIA GTX 1080 (2016)

“Shared” memory storage
(96 KB)

Registers for warp execution
contexts: max 64

(256 KB)

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp
0

Warp
1

Warp
63

Warp
62… …

This is one NVIDIA Pascal GP104 streaming multi-processor (SM) unit

= SIMD functional unit,
 control shared across 32 units
 (1 MUL-ADD per clock)

= SIMD special function unit
 (sin, cos, etc.)

= load/store

L1 cache
(48 KB)

▪ Instructions operate on 32
pieces of data at a time
(instruction streams called
“warps”).

▪ Different instructions from
up to four warps can be
executed simultaneously
(simultaneous multi-
threading)

▪ Up to 64 warps are
interleaved on the SM
(interleaved multi-
threading)

▪ Over 2,048 fragments/
vertices/etc can be processed
concurrently by a core

Stanford CS348K, Fall 2018

L2 Cache (2 MB)

GPU memory
DDR5 DRAM

320 GB/sec
(256 bit interface)

NVIDIA GTX 1080 (20 SMs)

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

96 KB shared
48 KB L1

256 KB registers

Stanford CS348K, Fall 2018

Shading languages summary
▪ Convenient/simple abstraction:

- Wide application scope: implement any logic within shader function subject to input/output constraints.

- Independent per-element SPMD programming model (no loops over elements, no explicit parallelism)

- Built-in primitives for texture mapping

▪ Facilitate high-performance implementation:
- SPMD shader programming model exposes parallelism (independent execution per element)

- Shader programming model exposes texture operations (can be scheduled on specialized HW)

▪ GPU implementations:
- Wide SIMD execution (shaders feature coherent instruction streams)

- High degree of multi-threading (multi-threading to avoid stalls despite large texture access latency)

- e.g., NVIDIA GPU: 16 times more warps (execution contexts) than can be executed per clock

- Fixed-function hardware implementation of texture filtering (efficient, performant)

- High performance implementations of transcendentals (sin, cos, exp) -- common operations in shading

Stanford CS348K, Fall 2018

One final thought

Stanford CS348K, Fall 2018

Recall: modern GPU is a heterogeneous processor

Cmd Processor /Vertex Generation

Frame Buffer Ops

Frame Buffer Ops

Frame Buffer Ops

Frame Buffer Ops

High-speed interconnect

Programmable
Core

Texture

Programmable
Core

Programmable
Core

Programmable
Core

Rasterizer

Tessellation

Programmable
Core

Texture

Programmable
Core

Programmable
Core

Programmable
Core

Rasterizer

Tessellation

Programmable
Core

Texture

Programmable
Core

Programmable
Core

Programmable
Core

Rasterizer

Tessellation

Programmable
Core

Texture

Programmable
Core

Programmable
Core

Programmable
Core

Rasterizer

Tessellation Work Distributor/Scheduler

Vertex Queue

Primitive Queue

Fragment Queue

. . .

Stanford CS348K, Fall 2018

An unusual aspect of GPU design (when
running graphics pipeline)
▪ Fixed-function components on a GPU control the operation of

the programmable components
- Fixed-function logic generates work (input assembler, tessellator, rasterizer

generate elements)

- Programmable logic defines how to process generated elements

▪ Application-programmable logic forms the inner loops of the
rendering computation, not the outer loops!

▪ Ongoing debate: can we flip this design around?
- Maintain efficiency of heterogeneous hardware implementation, but give

software control of how pipeline is mapped to hardware resources

Contrast this design to
video decode/tensor core
interfaces on a SoC

Stanford CS348K, Fall 2018

Discussion: what are the key
components of a DL framework?

Stanford CS348K, Fall 2018

Concept 1
▪ Defining operations and graphs

▪ Recall words of wisdom from Bill Mark
- The reason to use accelerators is for performance
- So high-productivity programming language better not

prevent you from getting good performance

Stanford CS348K, Fall 2018

Operators written in lower-level languages
▪ Common design choice in major frameworks like TensorFlow/

MX.net/PyTorch
Operation implementations in
low-level language like CUDA,
or performance library like
cuDNN or MKL-DNN

http://MX.net/PyTorch

Stanford CS348K, Fall 2018

Challenge many parameters to existing operators,
researchers create new types of operators

Increasing use of neural architecture
search is leading to increasing number
of layer parameterizations.

Stanford CS348K, Fall 2018

Interest in compiler support for generating implementations

▪ Example: AutoTVM
- Simulated annealing based search over schedule space
- Variant of Halide scheduling language where programmer defines

parameterized space space, not a specific schedule

ResNet-18 convlayers

Stanford CS348K, Fall 2018

Concept 2
▪ Eager vs. lazy evaluation

▪ Lazy = construct entire computation graph (IR), then execute
computation
- Traditional TensorFlow/mx.Net
- PyTorch JIT

▪ Eager = perform computations as NN library calls are
evaluated
- PyTorch
- TensorFlow Eager

http://mx.Net

Stanford CS348K, Fall 2018

Concept 3
▪ Challenge of writing gradients

black = algorithm code in CUDA
red = gradient code in CUDA

[Figure credit: Li et al 18]

Stanford CS348K, Fall 2018

Value of auto-differentiation

[See Gradient Halide for alternative]
[Figure credit: Li et al 18]

Stanford CS348K, Fall 2018

Barrage of systems/frameworks
▪ GLOW (FB): https://github.com/pytorch/glow

▪ PyTorch JIT (FB) (compiles to XLA)

▪ Swift for TensorFlow / DLVM (UIUC project, embedded in Swift, adds Autodiff)

▪ Flux (library in Julia built on top of Julia AutoDiff, compiles to TPU via XLA)
(https://github.com/FluxML/Flux.jl)

▪ Google XLA (large tensor ops, some basic fusion of ops)

▪ TVM (Halide-like, has auto scheduling of basic tensor ops)

▪ …

▪ Facebook Tensor Comprehensions (Polyhedral, emits Halide schedules for codegen)

▪ ONNX (https://github.com/onnx/onnx), framework for graph definition and
extensible optimization passes

- Halide implementation of most ONNX ops “exists”

▪ Gradient Halide (adds reverse-mode Autodiff to Halide)

https://github.com/pytorch/glow
https://github.com/FluxML/Flux.jl
https://github.com/onnx/onnx

Stanford CS348K, Fall 2018

VR hardware

Stanford CS348K, Fall 2018

VR headsets
Oculus Rift

HTC Vive

Sony Morpheus

Google
Cardboard

Google
Daydream

Oculus Go

Stanford CS348K, Fall 2018

AR headset: Microsoft Hololens

Stanford CS348K, Fall 2018

Oculus Rift CV1 headset

Image credit: ifixit.com

Stanford CS348K, Fall 2018

Role of optics in headset

1. Create wide field of view
2. Place focal plane at several meters

away from eye (close to infinity)

field of view

eye

OLED display

Lens diagram from Open Source VR Project (OSVR)
(Not the lens system from the Oculus Rift)
http://www.osvr.org/

Note: parallel lines reaching eye
converge to a single point on display
(eye accommodates to plane near
infinity)

Stanford CS348K, Fall 2018

Aside: near-eye “light field” displays
Attempt to recreate same magnitude and direction of rays of light as produced by
being in a real world scene.

Stanford CS348K, Fall 2018

Name of the game, part 1: low latency
▪ The goal of a VR graphics system is to achieve “presence”, tricking

the brain into thinking what it is seeing is real

▪ Achieving presence requires an exceptionally low-latency system
- What you see must change when you move your head!
- End-to-end latency: time from moving your head to the time new photons hit

your eyes
- Measure user’s head movement
- Update scene/camera position
- Render new image
- Transfer image to headset, then to transfer to display in headset
- Actually emit light from display (photons hit user’s eyes)

- Latency goal of VR: 10-25 ms
- Requires exceptionally low-latency head tracking
- Requires exceptionally low-latency rendering and display

Stanford CS348K, Fall 2018

Thought experiment: effect of latency

▪ Consider a 1,000 x 1,000 display spanning 100° field of view
- 10 pixels per degree

▪ Assume:
- You move your head 90° in 1 second (only modest speed)
- End-to-end latency of graphics system is 33 ms (1/30 sec)

▪ Therefore:
- Displayed pixels are off by 3° ~ 30 pixels from where they

would be in an ideal system with 0 latency

Example credit: Michael Abrash

Stanford CS348K, Fall 2018

Oculus CV1 IR camera and IR LEDs

60Hz IR Camera
(measures absolute position
of headset 60 times a second)

Headset contains:
IR LEDs (tracked by camera)
Gyro + accelerometer (1000Hz). (rapid relative positioning)

Image credit: ifixit.com

Stanford CS348K, Fall 2018

Valve’s Lighthouse: cameraless position tracking

Rotating Laser (X) Rotating Laser (Y)

LED light (“flash”)

Emit LED flash
at 60 Hz

position of laser
at t=0

(relative to flash)

position of
laser at
t=8ms

position of
laser at
t=16ms

“Lighthouse”

Receiver
(headset,

controller, etc.)

No need for computer vision processing to compute position
of receiver: just a light sensor and an accurate clock!

Image credit: Travis Deyle
http://www.hizook.com/blog/2015/05/17/valves-lighthouse-tracking-system-may-be-big-news-robotics

Stanford CS348K, Fall 2018

Accounting for resolution of eye

Stanford CS348K, Fall 2018

Name of the game, part 2: high resolution

iPhone 6: 4.7 in “retina” display:
1.3 MPixel

326 ppi → 57 ppd

~5o
Human: ~160° view of field per eye (~200° overall)
(Note: this does not account for eye’s ability to rotate in socket)

Eyes designed by SuperAtic LABS from the thenounproject.com

160o

Future “retina” VR display:
57 ppd covering 200°

= 11K x 11K display per eye
= 220 MPixel

Strongly suggests need for eye tracking and
foveated rendering (eye can only perceive

detail in 5° region about gaze point

Stanford CS348K, Fall 2018

Density of rod and cone cells in the retina

A Photon Accurate Model of the Human Eye

SIGGRAPH 2005 paper. page 6 October 2, 2005

cones are still migrating towards the center of the retina several
years after birth.

While this paper focus on cones, the retinal synthesizer has all the
connectivity information it needs to also generate receptive fields
of cones (and does so).

15 The Iris
The eye’s pupil is the hole in the iris. When the iris dilates, the pupil
changes in size. When the lens accommodates (changes focus), it
does so by bulging outward, and since the iris rests on the front sur-
face of the lens, the iris moves forward in the eye with changes in
accommodation (up to 0.4 mm). Our system includes this effect.

The pupils of real eyes are decentered relative to the optical axis es-
tablished by the cornea. The reason for the decentering is generally
believed to be to compensate for the center of the fovea being 5°
away from the center of this corneal optical axis. As with most other
anatomical features, the amount of decentering varies with the indi-
vidual. [Oyster 1999; Atchison and Smith 2000] state that most pu-
pils are decentered by ~0.5 mm, while [Wyatt 1995] measures de-
centering values for several eyes, and gives an average value of

0.25 mm. As described above, we found pupil decentering to be
necessary for our model, where a default value of 0.4 mm is used.

The center of the pupil actually moves by a small amount laterally
as the size of the pupil changes. [Wyatt 1995] measured an average
shift of 0.1 mm; extremes as large as 0.4 mm have been reported.
Real pupils are not only slightly elliptical in shape (~6%), but have
further irregular structure [Wyatt 1995]. The pupil is also not infi-
nitely thin; high incident angle rays will see an even more elliptical-
ly shaped pupil due to its finite thickness (~0.5 mm). In building our
system we considered these additional pupil shape details. Howev-
er, at the density that our system samples rays through the pupil,
none of these details other than the decentering make a significant
difference in our computation results, so they are not currently
model parameters. ([Wyatt 1995] comes to a similar conclusion.)

The range of pupil size changes is generally given as 2 to 8 mm. A
number of physiological factors can effect pupil size, but there are
simple models of predicted pupil diameter as a function illumina-
tion levels. To minimize optical aberrations, we generally used a
somewhat smaller pupil size than these formulas would predict for
the illumination levels of the video display devices being simulated
(usually a 2 mm or 3 mm entrance pupil).

The pupil sizes given above are actually the apparent size of the pu-
pil as viewed from outside the eye (through the cornea): the virtual
entrance pupil. The actual anatomical physical pupil size (as simu-
lated) is ~1.13 time smaller. The size and position of the pupil that
the cones see (through the lens) changes again: the virtual exit pu-
pil. The relative direction to the center of the virtual exit pupil from
a given point on the surface of the retina is an important value; this
is the maximal local light direction that the cones point in, and is in-
volved in the Stiles-Crawford Effect I below. The retinal synthesiz-
er models this tilt in cone cross-sections; within the plane of the ret-
inal sphere cones outlines are elongated (elliptical) and more spread
out density-wise by the reciprocal of the cosine of the angle be-
tween the direction to the center of the retinal sphere and the direc-
tion to the center of the exit pupil.

Figure 5: (a) Roorda Image (b) Our synthetic

Figure 4: 0.5° FOV centered on our synthesized fovea. Figure 6: Close up of our synthesized cones, ~3 µ diameter each.

Figure 1 continued.
7°

[Roorda 1999]

▪ Cones are color receptive cells
▪ Highest density of cones is in fovea

(best color vision at center of where human is looking)

Stanford CS348K, Fall 2018

Addressing high resolution and high field of view:
foveated rendering

Idea: track user’s gaze, render
with increasingly lower
resolution farther away from
gaze point

high-res
image

med-res
image low-res

image

Three images blended into one
for display

Stanford CS348K, Fall 2018

Traditional rendering (uniform screen sampling)
Assume eye tracker measures
viewer is looking here

[Patney et al. 2016]

Stanford CS348K, Fall 2018

Low-pass filter away from fovea
In this image, gaussian blur with radius dependent on distance from fovea is used to remove high frequencies

[Patney et al. 2016]

Stanford CS348K, Fall 2018

Contrast enhance periphery
Eye is receptive to contrast at periphery

[Patney et al. 2016]

Stanford CS348K, Fall 2018

Accounting for distortion due to design of
head-mounted display

Stanford CS348K, Fall 2018

Requirement: wide field of view

100°

Lens introduces distortion
- Pincushion distortion
- Chromatic aberration (different wavelengths of light refract by different amount)

Image credit: Cass Everitt

View of checkerboard through Oculus Rift lens

Icon credit: Eyes designed by SuperAtic LABS from the thenounproject.com

Stanford CS348K, Fall 2018

Rendered output must compensate for
distortion of lens in front of display

Step 1: render scene using traditional graphics pipeline at full resolution for each eye
Step 2: warp images and composite into frame so rendering is viewed correctly after lens distortion

(Can apply unique distortion to R, G, B to approximate correction for chromatic aberration)

5 Getting Started

Your developer kit is unpacked and plugged in. You have installed the SDK, and you are ready to go. Where
is the best place to begin?

If you haven’t already, take a moment to adjust the Rift headset so that it’s comfortable for your head and
eyes. More detailed information about configuring the Rift can be found in the Oculus Rift Hardware Setup
section of this document.

After your hardware is fully configured, the next step is to test the development kit. The SDK comes with a
set of full-source C++ samples designed to help developers get started quickly. These include:

• OculusWorldDemo - A visually appealing Tuscany scene with on-screen text and controls.

• OculusRoomTiny - A minimal C++ sample showing sensor integration and rendering on the Rift
(only available for D3DX platforms as of 0.4. Support for GL platforms will be added in a future
release).

We recommend running the pre-built OculusWorldDemo as a first-step in exploring the SDK. You can find a
link to the executable file in the root of the Oculus SDK installation.

5.1 OculusWorldDemo

Figure 4: Screenshot of the OculusWorldDemo application.

12

Image credit: Oculus VR developer guide

Stanford CS348K, Fall 2018

Problem: oversampling at periphery

Due to:
Warp to reduce optical distortion (sample shading densely in the periphery)
Also recall eye has less spatial resolution in periphery (assuming viewer’s
gaze is toward center of screen)

[Image credit: NVIDIA]

Stanford CS348K, Fall 2018

Multi viewport rendering

Render the scene once, but graphics pipeline using different sampling rates for
different regions (“viewports”)

[Image credit: NVIDIA]

Stanford CS348K, Fall 2018

Lens matched shading
▪ Render with four viewports

▪ “Compresses” scene in the periphery (fewer samples), while not affecting
scene near center of field of view

[Image credit: NVIDIA]

Stanford CS348K, Fall 2018

Lens matched shading

[Image credit: Oculus]

Stanford CS348K, Fall 2018

Accounting for interaction of display
update + display attached to head

Stanford CS348K, Fall 2018

Consider object position relative to eye

time

X
(position of object relative to eye)

Case 1: object stationary relative to eye:
(eye still and red object still

OR
red object moving left-to-right and

eye moving to track object
OR

red object stationary in world but head moving
and eye moving to track object)

time

X
(position of object relative to eye)

Case 2: object moving relative to eye:
(red object moving from left to right but

eye stationary, i.e., it’s focused on a different
stationary point in world)

X

Eyes designed by SuperAtic LABS from the thenounproject.com

NOTE: THESE GRAPHS PLOT OBJECT POSITION RELATIVE TO EYE
RAPID HEAD MOTION WITH EYES TRACK A MOVING OBJECT IS A FORM OF CASE 1!!!

Spacetime diagrams adopted from presentations by Michael Abrash

Stanford CS348K, Fall 2018

Effect of latency: judder
X

time

X

frame 0

frame 1

frame 2

frame 3

X

frame 0

frame 1

frame 2

frame 3

Case 2: object moving from left to
right, eye stationary

(eye stationary with respect to
display)

Continuous representation.

Case 2: object moving from left
to right, eye stationary

(eye stationary with respect to
display)

Light from display
(image is updated each frame)

Case 1: object moving from left to right,
eye moving continuously to track object

(eye moving relative to display!)

Light from display
(image is updated each frame)

Case 1 explanation: since eye is moving, object’s position is relatively constant relative to eye (as it should be since the
eye is tracking it). But due discrete frame rate, object falls behind eye, causing a smearing/strobing effect (“choppy”
motion blur). Recall from earlier slide: 90 degree motion, with 50 ms latency results in 4.5 degree smear

Spacetime diagrams adopted from presentations by Michael Abrash

Stanford CS348K, Fall 2018

Reducing judder: increase frame rate

time

X X

frame 0

frame 1

frame 2

frame 3

Case 1: continuous ground truth

red object moving left-to-right and
eye moving to track object

OR
red object stationary but head moving

and eye moving to track object

Light from display
(image is updated each frame)

X

frame 0
frame 1
frame 2
frame 3

Light from display
(image is updated each frame)

Higher frame rate results in closer
approximation to ground truth

frame 4
frame 5
frame 6
frame 7

Spacetime diagrams adopted from presentations by Michael Abrash

Stanford CS348K, Fall 2018

Reducing judder: low persistence display

time

X X

frame 0

frame 1

frame 2

frame 3

Case 1: continuous ground truth

red object moving left-to-right and
eye moving to track object

OR
red object stationary but head moving

and eye moving to track object

Light from full-persistence display

X

frame 0

frame 1

frame 2

frame 3

Light from low-persistence display

Full-persistence display: pixels emit light for entire frame
Low-persistence display: pixels emit light for small fraction of frame
Oculus DK2 OLED low-persistence display

- 75 Hz frame rate (~13 ms per frame)
- Pixel persistence = 2-3ms

Spacetime diagrams adopted from presentations by Michael Abrash

Stanford CS348K, Fall 2018

Artifacts due to rolling OLED backlight
▪ Image rendered based on scene state at time t0

▪ Image sent to display, ready for output at time t0 + Δt

▪ “Rolling backlight” OLED display lights up rows of pixels in sequence
- Let r be amount of time to “scan out” a row
- Row 0 photons hit eye at t0 + Δt
- Row 1 photos hit eye at t0 + Δt + r
- Row 2 photos hit eye at t0 + Δt + 2r

▪ Implication: photons emitted from bottom rows of display are “more stale” than
photos from the top!

▪ Consider eye moving horizontally relative to display (e.g., due to head movement
while tracking square object that is stationary in world) X

(position of object relative to eye)

Y
di

sp
la

y p
ixe

l r
ow

 Result: perceived shear!
Recall rolling shutter effects on modern digital cameras.

Stanford CS348K, Fall 2018

Compensating for rolling backlight
▪ Perform post-process shear on rendered image

- Similar to previously discussed barrel distortion and chromatic warps
- Predict head motion, assume fixation on static object in scene

- Only compensates for shear due to head motion, not object motion

▪ Render each row of image at a different time (the predicted time
photons will hit eye)
- Suggests exploration of different rendering algorithms that are more

amenable to fine-grained temporal sampling, e.g., ray caster? (each row of
camera rays samples scene at a different time)

Stanford CS348K, Fall 2018

Increasing frame rate using re-projection
▪ Goal: maintain as high a frame rate as possible under

challenging rendering conditions:
- Stereo rendering: both left and right eye views
- High-resolution outputs
- Must render extra pixels due to barrel distortion warp
- Many “rendering hacks” (bump mapping, billboards, etc.) are less effective in VR so

rendering must use more expensive techniques

▪ Researchers experimenting with reprojection-based
approaches to improve frame rate (e.g., Oculus’ “Time Warp”)
- Render using conventional techniques at 30 fps, reproject (warp) image to

synthesize new frames based on predicted head movement at 75-90 fps

- Interest in image processing hardware on future VR headsets to perform high
frame-rate reprojection based on gyro/accelerometer

Stanford CS348K, Fall 2018

Summary: near-future VR system components

Low-latency image processing
for subject tracking

Massive parallel computation for
high-resolution rendering

High-resolution, high-frame rate,
wide-field of view display

On headset graphics
processor for sensor
processing and re-
projection

In headset motion/accel
sensors + eye tracker

Exceptionally high bandwidth connection
between renderer and display:
e.g., 4K x 4K per eye at 90 fps!

