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Today

▪ Real-time 3D graphics workload metrics 

▪ Scheduling the graphics pipeline on a modern GPU
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GPU: heterogeneous parallel processor
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We’re now going to talk 
about this scheduler
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Graphics workload metrics
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Key 3D graphics workload metrics
▪ Data amplification from stage to stage 

- Average triangle size (amplification in rasterizer: 1 triangle -> N pixels) 

- Expansion during primitive processing (if enabled) 

- Tessellation factor (if tessellation enabled) 

▪ [Vertex/fragment/geometry] shader cost 
- How many instructions? 

- Ratio of math to data access instructions? 

▪ Scene depth complexity 
- Determines number of depth and color buffer writes
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Let’s consider different workloads
Average triangle size

Image credit: 
https://www.theverge.com/2013/11/29/5155726/next-gen-supplementary-piece 
http://www.mobygames.com/game/android/ghostbusters-slime-city/screenshots/gameShotId,852293/

https://www.theverge.com/2013/11/29/5155726/next-gen-supplementary-piece
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Triangle size 
(data from 2010)
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Low geometric detail
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Surface tessellation
Procedurally generate fine triangle mesh from coarse mesh representation Approximating Subdivision Surfaces with Gregory Patches

for Hardware Tessellation

Charles Loop
Microsoft Research

Scott Schaefer
Texas A&M University

Tianyun Ni
NVIDIA

Ignacio Castaño
NVIDIA

Figure 1: The first image (far left) illustrates an input control mesh; regular (gold) faces do not have an incident extraordinary vertex,
irregular quads (purple) have at least one extraordinary vertex, and triangular (green) faces are allowed. The second and third images show
the parametric patches we generate. The final image is of the same surface with a displacement map applied.

Abstract

We present a new method for approximating subdivision sur-
faces with hardware accelerated parametric patches. Our method
improves the memory bandwidth requirements for patch control
points, translating into superior performance compared to existing
methods. Our input is general, allowing for meshes that contain
both quadrilateral and triangular faces in the input control mesh, as
well as control meshes with boundary. We present two implementa-
tions of our scheme designed to run on Direct3D 11 class hardware
equipped with a tessellator unit.

1 Introduction

Catmull-Clark subdivision surfaces [Catmull and Clark 1978] have
become a standard for modeling free form shapes such as dynamic
characters in movies and computer games. By adding displacement
maps, we can create highly detailed shapes using a minimal amount
of storage [Lee et al. 2000]. Tools such as ZBrush combine these
two ideas to allow artists to edit models at multiple resolutions and
automatically create low resolution control meshes and displace-
ment maps.

Despite the prevalence of subdivision surfaces, realtime applica-
tions such as games predominately use polygon models to repre-
sent their geometry. The reason is understandable as GPU’s are
designed to accelerate polygon rendering and do so well. Yet, in
many cases, subdivision surfaces are already part of the content
creation pipeline for these applications. These surfaces are used in

non-realtime parts of production such as cut-scenes, but their real-
time counter parts are simplified polygon models of these high res-
olution characters. Ideally, we could use a high resolution polygon
model extracted at a high level of subdivision to better approximate
the character. However, this approach has a number of problems:

• Animation requires updating a large number of vertices each
frame using bone weights or morph targets, consuming com-
putational resources and harming performance.

• Faceting artifacts occur, due to the static nature of the polygon
mesh connectivity.

• Large polygon meshes consume significant disk, bus, and net-
work resources to store and transmit.

Given that these subdivision surfaces already exist, we could sim-
plify the content creation pipeline by skipping the precomputed,
fixed polygonalization step.

Figure 2: The Direct3D 11 graphics pipeline.

To address this issue, API designers and hardware vendors have
added a new tessellator unit to the graphics pipeline in Direct3D
11 [Drone et al. 2008]. This change adds new programmable stages,
the hull shader and the domain shader, to the graphics pipeline that
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the parametric patches we generate. The final image is of the same surface with a displacement map applied.

Abstract

We present a new method for approximating subdivision sur-
faces with hardware accelerated parametric patches. Our method
improves the memory bandwidth requirements for patch control
points, translating into superior performance compared to existing
methods. Our input is general, allowing for meshes that contain
both quadrilateral and triangular faces in the input control mesh, as
well as control meshes with boundary. We present two implementa-
tions of our scheme designed to run on Direct3D 11 class hardware
equipped with a tessellator unit.

1 Introduction

Catmull-Clark subdivision surfaces [Catmull and Clark 1978] have
become a standard for modeling free form shapes such as dynamic
characters in movies and computer games. By adding displacement
maps, we can create highly detailed shapes using a minimal amount
of storage [Lee et al. 2000]. Tools such as ZBrush combine these
two ideas to allow artists to edit models at multiple resolutions and
automatically create low resolution control meshes and displace-
ment maps.

Despite the prevalence of subdivision surfaces, realtime applica-
tions such as games predominately use polygon models to repre-
sent their geometry. The reason is understandable as GPU’s are
designed to accelerate polygon rendering and do so well. Yet, in
many cases, subdivision surfaces are already part of the content
creation pipeline for these applications. These surfaces are used in

non-realtime parts of production such as cut-scenes, but their real-
time counter parts are simplified polygon models of these high res-
olution characters. Ideally, we could use a high resolution polygon
model extracted at a high level of subdivision to better approximate
the character. However, this approach has a number of problems:

• Animation requires updating a large number of vertices each
frame using bone weights or morph targets, consuming com-
putational resources and harming performance.

• Faceting artifacts occur, due to the static nature of the polygon
mesh connectivity.

• Large polygon meshes consume significant disk, bus, and net-
work resources to store and transmit.

Given that these subdivision surfaces already exist, we could sim-
plify the content creation pipeline by skipping the precomputed,
fixed polygonalization step.

Figure 2: The Direct3D 11 graphics pipeline.

To address this issue, API designers and hardware vendors have
added a new tessellator unit to the graphics pipeline in Direct3D
11 [Drone et al. 2008]. This change adds new programmable stages,
the hull shader and the domain shader, to the graphics pipeline that

[image credit: Loop et al. 2009]

Coarse geometry Post-Tessellation 
(fine) geometry
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Graphics pipeline with tessellation 

Five programmable stages in modern pipeline 
(OpenGL 4, Direct3D 11)

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

1 in / 1 out

3 in / 1 out 
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out

1 in / 0 or 1 out

Fine Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Fine Primitive Processing

Coarse Vertices

Fine Primitives

Fragments

Pixels

1 in / 1 out

3 in / 1 out 
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out

1 in / 0 or 1 out

Fine Vertex Processing

Tessellation
Fine Vertices

Coarse Primitive ProcessingCoarse Primitives
1 in / 1 out

1 in / 1 out

1 in / N out
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Scene depth complexity

Rough approximation: TA = SD
T = # triangles 
A = average triangle area 
S = pixels on screen 
D = average depth complexity 

[Imagination Technologies] 
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Fine Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Fine Primitive Processing

Coarse Vertices

Fine Primitives

Fragments

Pixels

1 in / 1 out

3 in / 1 out 
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out

1 in / 0 or 1 out

Fine Vertex Processing

Tessellation
Fine Vertices

Coarse Primitive ProcessingCoarse Primitives
1 in / 1 out

1 in / 1 out

1 in / N out

Amount of data generated 
(size of stream between 
consecutive stages) Compact geometric model 

High-resolution 
(post tessellation) 

mesh 

Fragments

Frame buffer pixels

“Diamond” structure of 
graphics workload 

Intermediate data streams tend to 
be larger than scene inputs or 

image output
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Graphics pipeline workload changes 
dramatically across draw commands
▪ Triangle size is scene and frame dependent 

- Move far away from an object, triangles get smaller 
- Vary within a frame (characters are usually higher resolution meshes than buildings) 

▪ Varying complexity of materials, different number of lights illuminating surfaces 
- No such thing as a “canonical” shader 
- Tens to a few hundreds of instructions per shader 

▪ Stages can be disabled 
- Depth-only rendering = NULL fragment shader 
- Post-processing effects = no vertex work 

▪ Thousands of state changes and draw calls per frame 

Example: rendering a “depth map” requires 
vertex shading but no fragment shading 



Stanford CS348K, Fall 2018

Parallelizing the graphics pipeline

Adopted from slides by Kurt Akeley and Pat Hanrahan (Stanford CS448 Spring 2007)
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GPU: heterogeneous parallel processor
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We’re now going to talk 
about this scheduler
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Reminder: requirements + workload challenges
▪ Pipeline accepts sequence of commands 

- Draw commands 
- State modification commands 

▪ Processing commands has sequential semantics 
- Effects of command A must be visible before those of command B 

▪ Relative cost of pipeline stages changes frequently and unpredictably 
(e.g., due to changing triangle size, rendering mode) 

▪ Ample opportunities for parallelism 
- Many triangles, vertices, fragments, etc.
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Simplified pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Geometry

For now: just consider all geometry processing work 
(vertex/primitive processing, tessellation, etc.) as 
“geometry” processing. 

(I’m drawing the pipeline this way to match tonight’s 
suggested readings)

Output image

Application
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Simple parallelization (pipeline parallelism)

Rasterization

Frame-Buffer Ops

Output image

Separate hardware unit is responsible for 
executing work in each stage 

What is my maximum speedup?

Application

Geometry Processing

Fragment Processing
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A cartoon GPU:

Application

Output image

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Assume we have four separate processing pipelines 
Leverages data-parallelism present in rendering computation
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More realistic GPU
▪ A set of programmable cores (run vertex and fragment shader programs) 

▪ Hardware for rasterization, texture mapping, and frame-buffer access
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Molnar’s sorting taxonomy

Application

output image

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort first

Sort middle

Sort last fragment

Sort last image 
composition 

Implementations characterized by where communication occurs in pipeline

Note: The term “sort” can be misleading for some.  It may be helpful to instead consider 
the term “distribution” rather than sort.  The implementations are characterized by how 
and when they redistribute work onto processors. *  

* The origin of the term sort was from “A Characterization of Ten Hidden-Surface Algorithms”. Sutherland et al. 1974  
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Sort first
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Sort first
Application

Output image

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Assign each replicated pipeline responsibility for a region of the output image 
Do minimal amount of work (compute screen-space vertex positions of triangle) to 
determine which region(s) each input primitive overlaps 

Sort!
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Sort first work partitioning 
(partition the primitives to parallel units based on screen overlap)

1 2

3 4
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Sort first
Application

Output image

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort!

▪ Good: 
- Simple parallelization: just replicate rendering pipeline and operate independently 

in screen regions (order maintained in each)  
- More parallelism = more performance 
- Small amount of sync/communication (communicate original triangles) 
- Early fine occlusion cull (“early z”) just as easy as single pipeline
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Sort first

Application

Output image

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort!

▪ Bad: 
- Potential for workload imbalance (one part of screen contains most of scene) 
- Extra cost of triangle “pre-transformation” (needed to sort) 
- “Tile spread”: as screen tiles get smaller, primitives cover more tiles 

(duplicate geometry processing across multiple parallel pipelines)
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Sort first examples
▪ WireGL/Chromium* (parallel rendering with a cluster of GPUs) 

- “Front-end” node sorts primitives to machines 

- Each GPU is a full rendering pipeline 
(responsible for part of screen) 

▪ Pixar’s RenderMan 

- Multi-core software renderer 
- Sort surfaces into screen tiles prior to tessellation

* Chromium can also be configured as a sort-last image composition system 
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Sort middle
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Sort middle Application

Output image

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Distribute primitives to pipelines (e.g., round-robin distribution) 
Assign each rasterizer a region of the render target 
Sort after geometry processing based on screen space projection of primitive vertices

Sort!

Distribute
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Interleaved mapping of screen
▪ Decrease chance of one rasterizer processing most of scene 

▪ Most triangles overlap multiple screen regions (often overlap all) 

Interleaved mapping Tiled mapping

1 2 1 2

2 1 2 1
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Fragment interleaving in NVIDIA Fermi

Fine granularity interleaving Coarse granularity interleaving

Question 1: what are the benefits/weaknesses of each interleaving? 
Question 2: notice anything interesting about these patterns?

[Image source: NVIDIA]



Stanford CS348K, Fall 2018

Sort middle interleaved
Application

Output image

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort! - BROADCAST

Distribute

▪ Good: 
- Workload balance: both for geometry work AND onto rasterizers (due to interleaving) 
- Does not duplicate geometry processing for each overlapped screen region 
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Sort middle interleaved
Application

Output image

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort! - BROADCAST

Distribute

▪ Bad: 
- Bandwidth scaling: sort is implemented as a broadcast 

(each triangle goes to many/all rasterizers because of interleaved screen mapping) 
- If tessellation is enabled, must communicate many more primitives than sort first 
- Duplicated per triangle work across rasterizers
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SGI RealityEngine [Akeley 93] 

Sort-middle interleaved design 
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Sort-middle tiled (a.k.a. “chunking”, “bucketing”, “binning”) 
Step 1: sort triangles into bins
▪ One bin per “tile” of screen 
▪ Core runs vertex processing, computes 2D triangle/screen-tile overlap, 

inserts triangle into appropriate bin(s)

Core 1 Core 2 Core 3 Core 4

List of scene triangles

Bin 1 Bin 2 Bin 3 Bin 4

Bin 5 Bin 6 Bin 7 Bin 8

Bin 9 Bin 10 Bin 11 Bin 12

1 2

3
4

5

Bin 1 list: 1,2,3,4 

Bin 2 list: 4,5

After processing first five 
triangles:
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Sort-middle interleaved vs. binning
Processor 1

Processor 3

Processor 2

Processor 4

10

2 3

32

0 1

10

2 3

10

2 3

32

0 1

10

2 3
Interleaved (static) assignment 

of screen tiles to processors

B0 B1 B2 B3 B4 B5

B6 B7 B8 B9 B10 B11

B12 B13 B14 B15 B16 B17

B18 B19 B20 B21 B22 B23

Assignment to bins

List of bins is a work queue.  Bins are 
dynamically assigned to processors.
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Step 2: per-tile processing
▪ Cores process bins in parallel performing rasterization fragment 

shading and frame buffer update 

▪ While there are more bins to process: 
- Assign bin to available core 
- For all triangles: 

- Rasterize 
- Fragment shade 
- Depth test 
- Update frame buffer

Rasterizer

Depth Test

Render Target Blend

Data Cache

Shader 
Processor Core

Te
xt

ur
e

List of triangles in bin:

final pixels for NxN tile of 
render target
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What should the screen size of the bins be?
▪ Small enough for a tile of the color 

buffer and depth buffer (potentially 
supersampled) to fit in a shader 
processor core’s on-chip storage (i.e., 
cache) 

▪ Tile sizes in range 16x16 to 64x64 pixels 
are common 

▪ ARM Mali GPU: commonly uses 16x16 
pixel tiles
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Tiled rendering “sorts” the scene in 2D space to 
enable efficient color/depth buffer access
Consider rendering without a sort: 
(process triangles in order given)

8 2

3
4

5

6

1

7

This sample updated three times, 
but may have fallen out of cache in 
between accesses 

Now consider step 2 of a tiled 
renderer: 

Initialize Z and color buffer for tile 
for all triangles in tile: 
  for all each fragment: 
    shade fragment 
    update depth/color 
write color tile to final image buffer

Q. Why doesn’t the renderer need to write depth buffer in memory? *
Q. Why doesn’t the renderer need to read color or depth buffer from memory?

* Assuming application does not need depth buffer for other purposes.
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Sort middle tiled (chunked)
▪ Good: 

- Good load balance (distribute many buckets onto rasterizers) 

- Low bandwidth requirements (why? when?) 
- Challenge: “bucketing” sort has low contention (assuming each triangle 

only touches a small number of buckets), but there still is contention

▪ Recent examples: 

- Many mobile GPUs: Imagination PowerVR, 
ARM Mali, Qualcomm Adreno 

- Parallel software rasterizers 

- Intel Larrabee software rasterizer 

- NVIDIA CUDA software rasterizer
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Sort last
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Sort last fragment

Application

Output image

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Distribute primitives to top of pipelines (e.g., round robin) 
Sort after fragment processing based on (x,y) position of fragment

Distribute

Sort! - point-to-point
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Sort last fragment
Application

Output image

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Distribute

Sort! - point-to-point

▪ Good: 
- No redundant geometry processing or rasterizeration (but early z-cull is a problem) 
- Point-to-point communication during sort 
- Interleaved pixel mapping results in good workload balance for frame-buffer ops
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Sort last fragment
Application

Output image

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Distribute

Sort! - point-to-point

▪ Bad: 
- Pipelines may stall due to primitives of varying size (due to order requirement) 
- Bandwidth scaling: many more fragments than triangles  
- Hard to implement early occlusion cull (more bandwidth challenges)
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Sort last image composition

Application

Output image

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Distribute

Each pipeline renders some fraction of the geometry in the scene 
Combine the color buffers, according to depth into the final image 

frame buffer 0 frame buffer 1 frame buffer 3 frame buffer 4

Merge
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Sort last image composition



Stanford CS348K, Fall 2018

Sort last image composition
▪ Breaks graphics pipeline architecture abstraction: cannot maintain 

pipeline’s sequential semantics  

▪ Simple implementation: N separate rendering pipelines 

- Can use off-the-shelf GPUs to build a massive rendering system 

- Coarse-grained communication (image buffers) 

▪ Similar load imbalance problems as sort-last fragment 

▪ Under high depth complexity, bandwidth requirement is lower than sort 
last fragment 

- Communicate final pixels, not all fragments
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Fine Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Fine Primitive Processing

Coarse Vertices

Fine Primitives

Fragments

Pixels

1 in / 1 out

3 in / 1 out 
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out

1 in / 0 or 1 out

Fine Vertex Processing

Tessellation
Fine Vertices

Coarse Primitive ProcessingCoarse Primitives
1 in / 1 out

1 in / 1 out

1 in / N out

Recall: modern OpenGL 4 /
Direct3D 11 pipeline
Five programmable stages
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Modern GPU: programmable parts of pipeline virtualized 
on pool of programmable cores 

Cmd Processor /Vertex Generation

Frame Buffer Ops

Frame Buffer Ops

Frame Buffer Ops

Frame Buffer Ops

Hardware is a heterogeneous collection of resources (programmable and non-programmable)

High-speed interconnect

Programmable 
Core

Texture

Programmable 
Core

Programmable 
Core

Programmable 
Core

Rasterizer

Tessellation

Programmable 
Core

Texture

Programmable 
Core

Programmable 
Core

Programmable 
Core

Rasterizer

Tessellation

Programmable 
Core

Texture

Programmable 
Core

Programmable 
Core

Programmable 
Core

Rasterizer

Tessellation

Programmable 
Core

Texture

Programmable 
Core

Programmable 
Core

Programmable 
Core

Rasterizer

Tessellation Work Distributor/Scheduler

Vertex Queue

Primitive Queue

Fragment Queue

. . . 

Programmable resources are time-shared by vertex/primitive/fragment processing work 
Must keep programmable cores busy: sort everywhere 
Hardware work distributor assigns work to cores (based on contents of inter-stage queues)
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Sort everywhere
(How modern high-end GPUs are scheduled)
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Redistribute- point-to-point

Sort everywhere

Application

Output image

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Distribute primitives to top of pipelines 
Redistribute after geometry processing (e.g, round robin) 
Sort after fragment processing based on (x,y) position of fragment

Distribute

Sort! - point-to-point

[Eldridge 00] 
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Implementing sort everywhere

(Challenge: rebalancing work at multiple places in the 
graphics pipeline to achieve efficient parallel execution, 

while maintaining triangle draw order) 
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Starting state: draw commands enqueued for pipeline

Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input: three triangles to draw 
(fragments to be generated for each 
triangle by rasterization are shown below)

Frag Processing 0

Draw

Draw

Draw

Geometry
T1

T2

T3

1 2 3 4

1 2 3 4

1 2 3

Interleaved 
render target

0 1
1 0

Draw T1 
Draw T2 
Draw T3 

Frag Processing 1

Assume batch size is 2 for 
assignment to rasterizers.
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Geometry

0 1
1 0

T1 
T2 

Draw T3 

After geometry processing, first two processed triangles 
assigned to rast 0

Draw

Draw

Draw

T1

T2

T3

1 2 3 4

1 2 3 4

1 2 3

Frag Processing 1

Interleaved 
render target

Assume batch size is 2 for 
assignment to rasterizers.
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Geometry

0 1
1 0

T1 
T2 

Next 

T3 

Assign next triangle to rast 1 (round robin policy, batch size = 2) 
Q. What is the ‘next’ token for?

Draw

Draw

Draw

T1

T2

T3

1 2 3 4

1 2 3 4

1 2 3

Frag Processing 1

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Geometry

0 1
1 0

T2 
Next 

T1,1 
T1,2 

T3,1 
T3,3 

T1,3 

T1,4 

T3,2 

Rast 0 and rast 1 can process T1 and T3 simultaneously 
(Shaded fragments enqueued in frame-buffer unit input queues) 

Draw

Draw

Draw

T1

T2

T3

1 2 3 4

1 2 3 4

1 2 3

Frag Processing 1

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Geometry

0 1
1 0

T2 
Next 

T3,1 
T3,3 

T3,2 T1,2

T1,1

T1,3
T1,4

FB 0 and FB 1 can simultaneously process fragments from rast 0 
(Notice updates to frame buffer) 

Draw

Draw

Draw

T1

T2

T3

1 2 3 4

1 2 3 4

1 2 3

Frag Processing 1

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Geometry

0 1
1 0

T2 
Next 

T3,1 
T3,3 

T3,2 T1,2

T1,1

T1,3
T1,4

Fragments from T3 cannot be processed yet. Why?

Draw

Draw

Draw

T1

T2

T3

1 2 3 4

1 2 3 4

1 2 3

Frag Processing 1

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Geometry

0 1
1 0

Next 

T3,1 
T3,3 

T3,2 T1,2

T1,1

T1,3
T1,4

Rast 0 processes T2 
(Shaded fragments enqueued in frame-buffer unit input queues)

T2,1 T2,2
T2,3 T2,4

Draw

Draw

Draw

T1

T2

T3

1 2 3 4

1 2 3 4

1 2 3

Frag Processing 1

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Geometry

0 1
1 0

Switch 

T3,1 
T3,3 

T3,2 T1,2

T1,1

T1,3
T1,4

Rast 0 broadcasts ‘next’ token to all frame-buffer units

T2,1 T2,2
T2,3 T2,4

Draw

Draw

Draw

T1

T2

T3

1 2 3 4

1 2 3 4

1 2 3

Frag Processing 1

Switch 

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Geometry

0 1
1 0

T3,1 
T3,3 

T3,2 T1,2

T1,1

T1,3
T1,4

FB 0 and FB 1 can simultaneously process fragments from rast 0 
(Notice updates to frame buffer) 

T2,1

T2,2 T2,3

T2,4

Draw

Draw

Draw

T1

T2

T3

1 2 3 4

1 2 3 4

1 2 3

Frag Processing 1

Switch Switch 
Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Geometry

0 1
1 0

T3,1 
T3,3 

T3,2 T1,2

T1,1

T1,3
T1,4

Switch token reached: frame-buffer units start processing 
input from rast 1

T2,1

T2,2 T2,3

T2,4

Draw

Draw

Draw

T1

T2

T3

1 2 3 4

1 2 3 4

1 2 3

Frag Processing 1

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Geometry

0 1
1 0

T1,2

T1,1

T1,3
T1,4 T2,1

T2,2 T2,3

T2,4

FB 0 and FB 1 can simultaneously process fragments from rast 1 
(Notice updates to frame buffer) 

T3,1 T3,2

T3,3

Draw

Draw

Draw

T1

T2

T3

1 2 3 4

1 2 3 4

1 2 3

Frag Processing 1

Interleaved 
render target



Stanford CS348K, Fall 2018

Extending to parallel geometry units
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Starting state: commands enqueued

Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Geometry 0

0 1
1 0

Draw T1 
Draw T2 
Draw T3 

Geometry 1

Distrib

Draw T4 

Draw

Draw

Draw

T1

T2

T3

1 2 3 4

1 2 3 4

Draw T4 1 2

5 6 7

1 2 3 4

5

Frag Processing 1

Interleaved 
render target

Assume batch size is 2 for 
assignment to geom units 
and to rasterizers.
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Geometry 0

0 1
1 0

T1 
T2 

T3 

Geometry 1

Distrib

T4 
Next 

Draw

Draw

Draw

T1

T2

T3

1 2 3 4

1 2 3 4

Draw T4 1 2

5 6 7

1 2 3 4

5

Frag Processing 1

Distribute triangles to geom units round-robin (batches of 2) 

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Draw

Draw

Draw

Geometry 0
T1

T2

T3

1 2 3 4

1 2 3 4

0 1
1 0

Geometry 1

Distrib

Draw T4 1 2
T1,a 
T1,b 

5 6 7

Next 

1 2 3 4

5

T1,c 

Frag Processing 1

Geom 0 and geom 1 process triangles in parallel 
(Results after T1 processed are shown.  Note big triangle T1 broken into multiple work items. [Eldridge et al.]) 

T2 T3 
T4 Next 

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Draw

Draw

Draw

Geometry 0
T1

T2

T3

1 2 3 4

1 2 3 4

0 1
1 0

Geometry 1

Distrib

Draw T4 1 2
T1,a 
T1,b 

5 6 7

T2 
Next 

T3,a
T3,b 

1 2 3 4

5Next 

T4 T1,c 

Next 

Frag Processing 1

Geom 0 and geom 1 process triangles in parallel 
(Triangles enqueued in rast input queues.  Note big triangles broken into multiple work items. [Eldridge et al.]) 

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Draw

Draw

Draw

Geometry 0
T1

T2

T3

1 2 3 4

1 2 3 4

0 1
1 0

Geometry 1

Distrib

Draw T4 1 2
T1,a 
T1,b 

5 6 7

T2 
Next 

T3,a
T3,b 

1 2 3 4

5Next 

T4 T1,c 

Switch 

Frag Processing 1

Switch 

Geom 0 broadcasts ‘next’ token to rasterizers 

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Draw

Draw

Draw

Geometry 0
T1

T2

T3

1 2 3 4

1 2 3 4

0 1
1 0

Geometry 1

Distrib

Draw T4 1 2

5 6 7

Next T3,a
T3,b 

1 2 3 4

5Next 

T4 

T1,1 T1,2 
T1,3 T1,4 

T1,6 

T1,5 

T1,7 
T2,1 T2,2 
T2,3 T2,4 

Frag Processing 1

Switch 
Switch 

Rast 0 and rast 1 process triangles from geom 0 in parallel 
(Shaded fragments enqueued in frame-buffer unit input queues)

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Draw

Draw

Draw

Geometry 0
T1

T2

T3

1 2 3 4

1 2 3 4

0 1
1 0

Geometry 1

Distrib

Draw T4 1 2

5 6 7

T3,a
T3,b 

1 2 3 4

5Next 

T4 

T1,1 T1,2 
T1,3 T1,4 

T1,6 

T1,5 

T1,7 
T2,1 T2,2 
T2,3 T2,4 

Frag Processing 1

Switch 
Switch 

Rast 0 broadcasts ‘next’ token to FB units (end of geom 0, rast 0)

Switch Switch 

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Frag Processing 0

Draw

Draw

Draw

Geometry 0
T1

T2

T3

1 2 3 4

1 2 3 4

0 1
1 0

Geometry 1

Distrib

Draw T4 1 2

5 6 7

T3,a
T3,b 

1 2 3 4

5Next 

T4 

T1,6 T1,7 
T2,1 T2,2 
T2,3 T2,4 

T1,1

T1,2 T1,3

T1,4 T1,5

Frag Processing 1

Switch Switch 

Frame-buffer units process frags from (geom 0, rast 0) in parallel 
(Notice updates to frame buffer)

Switch Switch 

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Draw

Draw

Draw

Geometry 0
T1

T2

T3

1 2 3 4

1 2 3 4

0 1
1 0

Geometry 1

Distrib

Draw T4 1 2

5 6 7

T3,a
T3,b 

1 2 3 4

5Next 

T4 

T1,6 T1,7 
T2,1 T2,2 
T2,3 T2,4 

T1,1

T1,2 T1,3

T1,4 T1,5

Frag Processing 1Frag Processing 0

“End of rast 0” token reached by FB: FB units start processing input from rast 1 
(fragments from geom 0, rast 1)

Switch Switch 

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Draw

Draw

Draw

Geometry 0
T1

T2

T3

1 2 3 4

1 2 3 4

0 1
1 0

Geometry 1

Distrib

Draw T4 1 2

5 6 7

T3,a
T3,b 

1 2 3 4

5Next 

T4 

T1,6 T1,7 
T2,1 T2,2 
T2,3 T2,4 

T1,1

T1,2 T1,3

T1,4 T1,5

Frag Processing 1Frag Processing 0

“End of geom 0” token reached by rast units: rast units start processing input 
from geom 1 (note “end of geom 0, rast 1” token sent to rast input queues)

Switch Switch 

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Draw

Draw

Draw

Geometry 0
T1

T2

T3

1 2 3 4

1 2 3 4

0 1
1 0

Geometry 1

Distrib

Draw T4 1 2

5 6 7

1 2 3 4

5

Next 

T1,6 T1,7 
T2,1 T2,2 
T2,3 T2,4 

T1,1

T1,2 T1,3

T1,4 T1,5

Frag Processing 1Frag Processing 0

T3,1 T3,2
T3,3 T3,4
T3,5

Rast 0 processes triangles from geom 1 
(Note Rast 1 has work to do, but cannot make progress because its output queues are full)

T4 

Switch Switch 

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Draw

Draw

Draw

Geometry 0
T1

T2

T3

1 2 3 4

1 2 3 4

0 1
1 0

Geometry 1

Distrib

Draw T4 1 2

5 6 7

1 2 3 4

5

T1,6 T1,7 
T2,1 T2,2 
T2,3 T2,4 

T1,1

T1,2 T1,3

T1,4 T1,5

Frag Processing 1Frag Processing 0

T3,1 T3,2
T3,3 T3,4

Switch 
Switch T3,5

Rast 0 broadcasts “end of geom 1, rast 0” token to frame-buffer units

T4 

Switch Switch 

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Draw

Draw

Draw

Geometry 0
T1

T2

T3

1 2 3 4

1 2 3 4

0 1
1 0

Geometry 1

Distrib

Draw T4 1 2

5 6 7

1 2 3 4

5

T4,1 
T1,1

T1,2 T1,3

T1,4 T1,5

Frag Processing 1Frag Processing 0

Switch Switch T3,1 T3,2
T3,3 T3,4

Switch 
Switch 

T2,1 T2,2

T2,3 T2,4

T1,6

T1,7

T4,2 
T3,5

Frame-buffer units process frags from (geom 0, rast 1) in parallel 
(Notice updates to frame buffer. Also notice rast 1 can now make progress since space has become available)

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Draw

Draw

Draw

Geometry 0
T1

T2

T3

1 2 3 4

1 2 3 4

0 1
1 0

Geometry 1

Distrib

Draw T4 1 2

5 6 7

1 2 3 4

5

T4,1 T1,1

T1,2 T1,3

T1,4 T1,5

Frag Processing 1Frag Processing 0

T3,1 T3,2
T3,3 T3,4

Switch 
Switch 

T2,1 T2,2

T2,3 T2,4

T1,6

T1,7

T4,2 

T3,5

Switch token reached by FB: FB units start processing input from 
(geom 1, rast 0)

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Draw

Draw

Draw

Geometry 0
T1

T2

T3

1 2 3 4

1 2 3 4

0 1
1 0

Geometry 1

Distrib

Draw T4 1 2

5 6 7

1 2 3 4

5

T4,1 T1,1

T1,2 T1,3

T1,4 T1,5

Frag Processing 1Frag Processing 0

Switch Switch T2,1 T2,2

T2,3 T2,4

T1,6

T1,7

T4,2 

T3,1 T3,2

T3,3 T3,4

T3,5

Frame-buffer units process frags from (geom 1, rast 0) in parallel 
(Notice updates to frame buffer)

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Draw

Draw

Draw

Geometry 0
T1

T2

T3

1 2 3 4

1 2 3 4

0 1
1 0

Geometry 1

Distrib

Draw T4 1 2

5 6 7

1 2 3 4

5

T4,1 T1,1

T1,2 T1,3

T1,4 T1,5

Frag Processing 1Frag Processing 0

T2,1 T2,2

T2,3 T2,4

T1,6

T1,7

T4,2 

T3,1 T3,2

T3,3 T3,4

T3,5

Switch token reached by FB: FB units start processing input from 
(geom 1, rast 1)

Interleaved 
render target
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Rasterizer 0 Rasterizer 1

Frame-buffer 0 Frame-buffer 1

Input:

Draw

Draw

Draw

Geometry 0
T1

T2

T3

1 2 3 4

1 2 3 4

0 1
1 0

Geometry 1

Distrib

Draw T4 1 2

5 6 7

1 2 3 4

5

T1,1

T1,2 T1,3

T1,4 T1,5

Frag Processing 1Frag Processing 0

T2,1 T2,2

T2,3 T2,4

T1,6

T1,7

T3,1 T3,2

T3,3 T3,4

T3,5

T4,1 T4,2

Frame-buffer units process frags from (geom 1, rast 1) in parallel 
(Notice updates to frame buffer)

Interleaved 
render target
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Parallel scheduling with data amplification 
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Geometry amplification
▪ Consider examples of one-to-many stage behavior during 

geometry processing in the graphics pipeline: 

- Clipping amplifies geometry (clipping can result in multiple 
output primitives) 

- Tessellation: pipeline permits thousands of vertices to be 
generated from a single base primitive  (challenging to 
maintain highly parallel execution)  

- Primitive processing (“geometry shader”) outputs up to 1024 
floats worth of vertices per input primitive
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Thought experiment
Command Processor

Geometry 
Amplifier

. . .. . . Rasterizer

Geometry 
Amplifier

T2

Geometry 
Amplifier

Geometry 
Amplifier

T1
T4
T3

T6
T5

T8
T7

Assume round-robin distribution of eight primitives to geometry pipelines, one rasterizer unit.



Stanford CS348K, Fall 2018

Consider case of large amplification when processing T1

Command Processor

Geometry 
Amplifier

. . .. . . Rasterizer

Geometry 
Amplifier

T2

T3,1
T3,2
T4,1

T1,1
T1,2
T1,3
T1,4
T1,5
T1,6

Geometry 
Amplifier

Geometry 
Amplifier

T4,2
T4,3
T4,4

T5,1
T6,1
T6,2
T6,3
T6,4
T6,5

T7,1
T7,2
T7,3
T8,1
T8,2
T8,3

Result: one geometry unit (the one producing outputs from T1) is feeding the entire downstream pipeline 
- Serialization of geometry processing: other geometry units are stalled because their output queues 

are full (they cannot be drained until all work from T1 is completed) 
- Underutilization of rest of chip: unlikely that one geometry producer is fast enough to produce 

pipeline work at a rate that fills resources of rest of GPU.

Notice: output from T1 
processing fills output queue
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Thought experiment: design a scheduling strategy for 
this case

Command Processor

Geometry 
Amplifier

. . .. . . Rasterizer

Geometry 
Amplifier

T2

T3,1
T3,2
T4,1

T1,1
T1,2
T1,3
T1,4
T1,5
T1,6

Geometry 
Amplifier

Geometry 
Amplifier

T4,2
T4,3
T4,4

T5,1
T6,1
T6,2
T6,3
T6,4
T6,5

T7,1
T7,2
T7,3
T8,1
T8,2
T8,3

1. Design a solution that is performant when the expected amount of data amplification is low? 
2. Design a solution this is performant when the expected amount of data amplification is high 
3. What about a solution that works well for both? 
The ideal solution always executes with maximum parallelism (no stalls), and with maximal locality  
(units read and write to fixed size, on-chip inter-stage buffers), and (of course) preserves order.
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Implementation 1: fixed on-chip storage
Command Processor

Geometry 
Amplifier

. . .. . . Rasterizer

Geometry 
Amplifier

Geometry 
Amplifier

Geometry 
Amplifier

Approach 1: make on-chip buffers big enough to handle common cases, but tolerate stalls 
- Run fast for low amplification (never move output queue data off chip) 
- Run very slow under high amplification (serialization of processing due to blocked units).  Bad 

performance cliff.

Small, on-chip buffers
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Command Processor

Geometry 
Amplifier

. . .. . . Rasterizer

Geometry 
Amplifier

Geometry 
Amplifier

Geometry 
Amplifier

Implementation 2: worst-case allocation

Approach 2: never block geometry unit: allocate worst-case space in off-chip buffers (stored in DRAM) 
- Run slower for low amplification (data goes off chip then read back in by rasterizers) 
- No performance cliff for high amplification (still maximum parallelism, data still goes off chip) 
- What is overall worst-case buffer allocation if the four geometry units above are Direct3D 11 

geometry shaders?

. . . . . . . . . . . .

Large, in-memory buffers
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Command Processor

Geometry 
Amplifier

. . .. . . Rasterizer

Geometry 
Amplifier

Geometry 
Amplifier

Geometry 
Amplifier

Implementation 3: hybrid

Hybrid approach: allocate output buffers on chip, but spill to off-chip, worst-case size buffers under 
high amplification 
- Run fast for low amplification (high parallelism, no memory traffic) 
- Less of performance cliff for high amplification (high parallelism, but incurs more memory traffic)

Off-chip 
(spill) buffers

. . . . . . . . . . . .

On-chip 
buffers
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NVIDIA GPU implementation
Optionally resort work after “Hull” shader stage (since amplification factor known)


