
Visual Computing Systems
Stanford CS348K, Fall 2018

Lecture 15:

Data Access in the Graphics Pipeline:
Efficient Implementations of Texture

Mapping and Depth Buffering

Stanford CS348K, Fall 2018

Last time: graphics pipeline architecture

Primitive Generation

Vertex Generation

Kernel 1
(Per-Vertex Processing)

Rasterization
(Fragment Generation)

Frame-Buffer Ops

Vertices

Primitives

Fragments

Pixels

Memory

image + depth buffers

Kernel 2
(Per-Primitive Processing)

Kernel 3
(Per-Fragment Processing)

vertex stream

clip space vertex stream

primitive stream

primitive stream

fragment stream

shaded fragment stream

input buffers / input textures

input vertex data buffers

input buffers / input textures

input buffers / input textures

+ Some implementation details about rasterization

Stanford CS348K, Fall 2018

Today: revisiting a major course theme:
efficiently handling data access

▪ Q. Why be efficient with data access?

▪ Answer: performance cost: performance of modern parallel
applications is often bandwidth-limited on modern
computers

▪ Answer: energy cost: high cost of moving data

Stanford CS348K, Fall 2018

How did Halide help address this problem?
▪ Scheduling primitives for improving producer-consumer locality

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

blurx.compute_at(out, x);

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:

 allocate 258x34 buffer for tile blurx
 for yi=0 to 32+2:
 for xi=0 to 256+2:
 tmp_blurx(xi,yi) = // compute blurx from in

 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = …

Compute necessary elements of blurx within out’s x
loop nest (all necessary elements for one tile of out)

tile of blurx is
computed here (and
hopefully retained in cache)

tile of blurx is consumed here

Stanford CS348K, Fall 2018

What elements have we seen in image
processing hardware architectures?

▪ On-chip storage for intermediate tiles/lines of an image
- e.g., Pixel Visual Core

Stanford CS348K, Fall 2018

What elements did we see in DNN hardware
accelerators?
▪ Systolic array architectures: data flows efficiently between

processing elements (PE’s don’t reload data from memory)

Stanford CS348K, Fall 2018

Memory access in the graphics pipeline
Sources of data access in the graphics pipeline:
- Inter-stage stream buffers
- Texture access (read only access to texture data)
- Frame-buffer access (read/write access to color

and depth buffer)Primitive Generation

Vertex Generation

Kernel 1
(Per-Vertex Processing)

Rasterization
(Fragment Generation)

Frame-Buffer Ops

Vertices

Primitives

Fragments

Pixels

Kernel 2
(Per-Primitive Processing)

Kernel 3
(Per-Fragment Processing)

vertex stream

clip space vertex stream

primitive stream

primitive stream

fragment stream

shaded fragment stream

Output image buffer

Textures

Depth buffer

Stanford CS348K, Fall 2018

Part 1:
efficient implementation of

texture mapping

Stanford CS348K, Fall 2018

Many uses of texture mapping
Define spatial variation in surface reflectance

Pattern on ball Wood grain on floor

Stanford CS348K, Fall 2018

Describe surface material properties

Multiple layers of texture maps for color, logos,
scratches, etc.

Stanford CS348K, Fall 2018

Layered material
(composition of many textures)

Stanford CS348K, Fall 2018

Normal mapping: texture encodes
perturbation of surface normal

Use texture value to perturb surface normal to give
appearance of a bumpy surface

Observe: smooth silhouette and smooth shadow
boundary indicates surface geometry is not bumpy

Rendering using high-resolution surface geometry
(note bumpy silhouette and shadow boundary)

Stanford CS348K, Fall 2018
Grace Cathedral environment map Environment map used in rendering

Textures encode precomputed lighting and
shadows

+

Stanford CS348K, Fall 2018

Background:
Texture mapping math

Stanford CS348K, Fall 2018

Texture coordinates

myTex(u,v) is a function
defined on the [0,1]2 domain:

myTex : [0,1]2 → float3
(represented by 2048x2048 image)

“Texture coordinates” define a mapping from surface position (points on triangle) to
points in texture image domain

Today we’ll assume surface-to-texture space mapping is provided as per vertex attribute
(Not discussing methods for generating surface texture parameterizations)

(0.0, 0.0) (1.0, 0.0)

(1.0, 1.0)(0.0, 1.0)

(0.0, 0.5) (1.0, 0.5)(0.5, 0.5)

(0.5, 1.0)

(0.5, 0.0)

Eight triangles (one face of cube) with surface
parameterization provided as per-vertex
texture coordinates.

Final rendered result (entire cube
shown).

Location of triangle after projection
onto screen is shown in red.

Location of highlighted triangle
in texture space shown in red.

(1.0, 1.0)

(0.0, 0.0)

Stanford CS348K, Fall 2018

Visualization of texture coordinates

(0.0, 0.0) (1.0, 0.0)

(0.0, 1.0)

(red)

(green)

Texture coordinates linearly interpolated over triangle

Stanford CS348K, Fall 2018

More complex mapping

u

v

Each vertex has a coordinate (u,v) in texture space.
(Coming up with vertex coordinate values is topic of a graphics class)

Visualization of texture coordinates Triangle vertices in texture space

Stanford CS348K, Fall 2018

Simple texture mapping operation

for each fragment (x,y) in fragment stream:

 // interpolate per-vertex coordinates

 (u,v) = evaluate texcoord value of surface at screen point (x,y);

 float3 texture_color = texture.sample(u,v);

 color of surface at (x,y) = texture_color;

Stanford CS348K, Fall 2018

Texture mapping adds detail

u

vRendered result Triangle vertices in texture space

Stanford CS348K, Fall 2018

Texture mapping adds detail
rendering with texturerendering without texture texture image

zo
om

Stanford CS348K, Fall 2018

Another example: Sponza

Notice texture coordinates repeat over surface.

Stanford CS348K, Fall 2018

Textured Sponza

Stanford CS348K, Fall 2018

Example texture images used in Sponza

Stanford CS348K, Fall 2018

Texture space samples

Sample positions are uniformly distributed in screen space
(rasterizer samples triangle’s appearance at these locations)

Texture sample positions in texture space (texture
function is sampled at these locations)

u

v

Sample positions in XY screen space Sample positions in texture space

1 2 3 4 5

1
2

3
4

5

Stanford CS348K, Fall 2018

Aliasing due to undersampling texture

Rendering using pre-filtered texture dataNo pre-filtering of texture data
(resulting image exhibits aliasing)

Stanford CS348K, Fall 2018

Aliasing due to undersampling (zoom)

Rendering using pre-filtered texture dataNo pre-filtering of texture data
(resulting image exhibits aliasing)

Stanford CS348K, Fall 2018

Another example:

Jaggies

Moire

Source image: 1280x1280 pixels Rendered image: 256x256 pixels

Stanford CS348K, Fall 2018

Sampling rate on screen vs texture

600 pixels600 pixels

Screen space (x,y) Texture space (u,v)

Texture is “minified”

Texture ImageRendered image (object zoomed out)

Red dots = samples needed to render
White = samples existing in texture map

Stanford CS348K, Fall 2018

Sampling rate on screen vs texture

600 pixels600 pixels

Screen space (x,y) Texture space (u,v)

Texture is “magnified”

Texture ImageRendered image (zoomed in)

Red dots = samples needed to render
White = samples existing in texture map

Stanford CS248, Spring 2018

Screen pixel footprint in texture space

upsampling
magnification

downsampling
minification

Upsampling
(Magnification)

Downsampling
(Minification)

Stanford CS348K, Fall 2018

Screen pixel area vs texel area
▪ At optimal viewing size:

- 1:1 mapping between pixel sampling rate and  
texel sampling rate

- Dependent on screen and texture resolution! e.g. 512x512

▪ When larger (magnification)
- Multiple pixel samples per texel sample

▪ When smaller (minification)
- One pixel sample per multiple texel samples

Stanford CS348K, Fall 2018

Mipmap (L. Williams 83)

Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

“Mip” comes from the Latin “multum in parvo", meaning a multitude in a small space

(You have seen this earlier in class as a Gaussian pyramid)

Stanford CS348K, Fall 2018

Mipmap (L. Williams 83)

Williams’ original proposed
mip-map layout

“Mip hierarchy”
level = d

u

v

Slide credit: Akeley and Hanrahan

Stanford CS348K, Fall 2018

Computing d

Screen space Texture space

Compute differences between texture coordinate values of neighboring fragments

u

v

Stanford CS348K, Fall 2018

Computing d
Compute differences between texture coordinate values of neighboring fragments

du/dx = u10-u00
du/dy = u01-u00

dv/dx = v10-v00
dv/dy = v01-v00

(u,v)00 (u,v)10

(u,v)01

L

mip-map d = log2(L)

u

v
L

du/dx
dv/dx

Stanford CS348K, Fall 2018

“Tri-linear” filtering

mip-map texels: level d

mip-map texels: level d+1

Bilinear resampling: 3 lerps (3 mul + 6 add)

Trilinear resampling: 7 lerps (7 mul + 14 add)

Figure credit: Akeley and Hanrahan

Stanford CS348K, Fall 2018

Sponza (bilinear resampling at level 0)

Stanford CS348K, Fall 2018

Sponza (bilinear resampling at level 2)

Stanford CS348K, Fall 2018

Sponza (bilinear resampling at level 4)

Stanford CS348K, Fall 2018

Mip-map level visualization
(trilinear filtering: visualization of continuous d)

Stanford CS348K, Fall 2018

GPUs shade at the granularity of 2x2 fragments

(“quad fragment” is the minimum granularity of rasterization output and shading)

Enables cheap computation of
texture coordinate differentials
(cheap: derivative computation
leverages shading work that must be
done by adjacent fragment anyway)

All quad-fragments are shaded
independently
(communication is between fragments
in a quad fragment, no communication
required between quad fragments)

Stanford CS348K, Fall 2018

Principle of texture thrift

Given a scene consisting of textured 3D surfaces, the amount of
texture information minimally required to render an image of the
scene is proportional to the resolution of the image and is
independent of the number of surfaces and the size of the textures.

[Peachey 90]

Stanford CS348K, Fall 2018

Summary: a texture sampling operation
1. Compute u and v from screen sample x,y (via evaluation of attribute equations)

2. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad-fragment samples

3. Compute d

4. Convert normalized texture coordinate (u,v) to texture coordinates texel_u, texel_v

5. Compute required texels in window of filter **

6. Load required texels from memory (need eight texels for trilinear)

7. Perform tri-linear interpolation according to (texel_u, texel_v, d)

Takeaway: a texture sampling operation is not just an image pixel lookup! It involves
a significant amount of math.

All modern GPUs have dedicated fixed-function hardware support for performing
texture sampling operations.

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode configuration

Stanford CS348K, Fall 2018

GPU: heterogeneous, multi-core processor

GPU
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

T-OP’s of fixed-function
compute capability over here

Scheduler / Work Distributor

Modern GPUs offer ~ TFLOPs of performance for
executing vertex and fragment shader programs

Stanford CS348K, Fall 2018

Texture caching

Stanford CS348K, Fall 2018

Texture system block diagram

GPU programmable core
(executes fragment shaders)

Texture Processor
(fixed-function)

Texture data cache

Texture request
(e.g., uv, d, trilerp)

Texture response
(e.g., fp32 rgba)

GPU DRAMDecompression

Stanford CS348K, Fall 2018

Consider memory implications of texturing
▪ Texture data footprint

- Modern game scenes = many large textures
- GBs of texture data in a scene (uncompressed 2K x 2K RGB is 12MB)

▪ Texture bandwidth
- 8 texels per tri-linear fetch
- Modern GPU: billions of fragments/sec

(NVIDIA GTX 1080: ~300 billion filtered texture values/sec)

▪ A performant graphics system needs:
- High memory bandwidth
- Texture caching
- Texture data compression
- Latency hiding solution to avoid stalls during texture data access

Stanford CS348K, Fall 2018

Review: the role of caches in CPUs
▪ Reduce latency of data access

▪ Reduce off-chip bandwidth requirements (caches service
requests that would require DRAM access)
- Note: alternatively, you can think about caches as bandwidth amplifiers (data

path between cache and ALUs is usually wider than that to DRAM)

▪ Convert fine-grained (word-sized) memory requests from
processors into large (cache-line sized) requests than can be
serviced efficiently by wide memory bus and DRAM

Stanford CS348K, Fall 2018

Texture caching thought experiment
Assume:
Row-major rasterization order
Horizontal texels contiguous in memory
Texture cache line = 4 texels

same cache line

same cache line

same cache line

same cache line

same cache line

same cache line
u

v

mip-map: level d texels

mip-map: level d+1 texels

Stanford CS348K, Fall 2018

What type of data reuse does a texture cache
designed to capture?
▪ Spatial locality across fragments, not temporal locality within a fragment!

- The same texels are required to filter texture fetches from adjacent fragments
(due to overlap of filter support regions)

- Little-to-no temporal locality within a fragment shader (there is little reason for a shader
to access the same part of the texture map twice when computing surface appearance)

0 1 2 3

Figure illustrates filter support
regions from texture fetches from
four adjacent fragments

Stanford CS348K, Fall 2018

Now rotate triangle on screen
Assume:
Row-major rasterization order
Horizontal texels contiguous in memory
Cache line = 4 texels

same cache line

same cache line

same cache line

same cache line

same cache line

same cache line

u

v

mip-map: level d texels

mip-map: level d+1 texels

Stanford CS348K, Fall 2018

4D blocking (texture is 2D array of 2D blocks: robust to triangle orientation)

mip-map: level d texels

mip-map: level d+1 texels

Assume:
Row-major rasterization order
2D blocks of texels contiguous in memory
Cache line = 4 texels

u

v

same cache line

same cache line

same cache line

same cache line

Stanford CS348K, Fall 2018

Tiled rasterization increases reuse
Assume:
Blocked rasterization order!
2D blocks of texels contiguous in memory
Cache line = 4 texels

u

v

same cache line

same cache line

same cache line

same cache line

mip-map: level d texels

mip-map: level d+1 texels

Stanford CS348K, Fall 2018

Key metric: unique texel-to-fragment ratio
▪ Unique texel-to-fragment ratio

- Number of unique texels accessed when rendering a scene divided by number of
fragments processed [see Igeny reading for stats: can be less than < 1]

- What is the worst case ratio assuming trilinear filtering?

- How can inaccurate computation of texture mip level (d) affect this?

▪ In reality, texture caching behavior is good, but not CPU
workload good
- [Montrym & Moreton 95] design for 90% hits

- Only so much spatial locality to exploit (no high temporal locality like CPU workloads)

Stanford CS348K, Fall 2018

Texture data access characteristics
▪ Key metric: unique texel-to-fragment ratio

- Number of unique texels accessed when rendering a scene divided by number of
fragments processed [see Igeny reading for stats: often less than < 1]

- What is the worst-case ratio? (assuming trilinear filtering)

- How can incorrect computation of texture miplevel (d) affect this?

▪ In practice, caching behavior is good, but not CPU workload good
- [Montrym & Moreton 95] design for 90% hits

- Why? (only so much spatial locality)

▪ Implications
- GPU must provide high memory bandwidth for texture data access

- GPU must have solution for hiding memory access latency

- GPU must reduce its bandwidth requirements using caching and texture compression

Stanford CS348K, Fall 2018

Hiding the latency of texture
sampling and texture data access

Stanford CS348K, Fall 2018

1. Compute u and v from screen sample x,y (via evaluation of attribute equations)

2. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad-fragment samples

3. Compute d

4. Convert normalized texture coordinate (u,v) to texture coordinates texel_u, texel_v

5. Compute required texels in window of filter **

6. If texture data in filter footprint (eight texels for trilinear filtering) is not in cache:

- Load required texels (in compressed form) from memory

- Decompress texture data

7. Perform tri-linear interpolation according to (texel_u, texel_v, d)

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode configuration

Texture sampling is a high-latency operation

Latency of texture fetch includes the time to perform math for texel
address computation, decompression, and filtering (not just latency of
fetching data from memory)

Stanford CS348K, Fall 2018

Addressing texture sampling latency
▪ Processor requests filtered texture data → processor waits hundreds of cycles

(significant loss of performance)

▪ Solution prior to programmable GPU cores: texture data prefetching
- Igehy et al. Prefetching in a Texture Cache Architecture

▪ Solution in all modern GPUs: multi-threaded processor cores

Stanford CS348K, Fall 2018

Prefetching example: large fragment FIFOs
Texture prefetching (from Igehy 1998)

Rasterization

Texture Filtering

Texel cache tags
(texel ids)

Memory
request fifo

Memory
reorder buffer

Memory
System

Texel cache data

Fragment FIFO
(coverage, Z, attribs)

Note: fragment FIFO
must be large! Why?

Texel addresses

Cache addresses

Cache addresses

Texel data

Stanford CS348K, Fall 2018

A more modern design

Texel
cache tags
(texel ids)

Memory
request fifo

Memory
reorder buffer

Memory
System

Texel
cache data

Texture
request fifo

Texel addresses

Cache addresses

Cache
addresses

Texel data

Programmable
GPU Core

Texel address
computation

Texel Filtering

texture request:
(u,v, du, dv, lod)

filtered texture
result: rgba

Texture Sampling Unit

Stanford CS348K, Fall 2018

Modern GPUs: texture latency is hidden via
hardware multi-threading

Exec Context 0
Exec Context 1
Exec Context 2

Exec Context 63

. . .

Multi-threaded
GPU Core

Memory
System

Texture
Sampling

Unit

texture request:
(u,v, du, dv, lod)

filtered texture
result: rgba

texel data

texel data
request

GPU executes instructions from runnable fragments when other fragments are waiting
on texture sampling responses.

Fragment FIFO from Igehy’s prefetching design is now represented by live fragment state
in the programmable core (a GPU “thread”)

Stanford CS348K, Fall 2018

Texture compression
(reducing bandwidth cost)

Stanford CS348K, Fall 2018

A texture sampling operation
1. Compute u and v from screen sample x,y (via evaluation of attribute equations)

2. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad-fragment samples

3. Compute d

4. Convert normalized texture coordinate (u,v) to texture coordinates texel_u, texel_v

5. Compute required texels in window of filter **

6. If texture data in filter footprint (eight texels for trilinear filtering) is not in cache:

- Load required texels (in compressed form) from memory

- Decompress texture data

7. Perform tri-linear interpolation according to (texel_u, texel_v, d)

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode configuration

Stanford CS348K, Fall 2018

Texture compression
▪ Goal: reduce bandwidth requirements of texture access

▪ Texture is read-only data
- Compression can be performed off-line, so compression algorithms can take

significantly longer than decompression (decompression must be fast!)
- Lossy compression schemes are permissible

▪ Design requirements
- Support random texel access into texture map (constant time access to any texel)
- High-performance decompression
- Simple algorithms (low-cost hardware implementation)
- High compression ratio
- High visual quality (lossy is okay, but cannot lose too much!)

Stanford CS348K, Fall 2018

Simple scheme: color palette (indexed color)
▪ Lossless (if image contains a small

number of unique colors)

0 1 2 3 4 5 6 7

Color palette (eight colors)

Image encoding in this example:
3 bits per texel + eight RGB values in palette (8x24 bits)

0 1 3 6

0 2 6 7

1 4 6 7

4 5 6 7 What is the compression ratio?

Stanford CS348K, Fall 2018

Per-block palette
▪ Block-based compression scheme on 4x4 texel blocks

- Idea: there might be many unique colors across an entire image, but can
approximate all values in any 4x4 texel region using only a few unique colors

▪ Per-block palette (e.g., four colors in palette)
- 12 bytes for palette (assume 24 bits per RGB color: 8-8-8)

- 2 bits per texel (4 bytes for per-texel indices)

- 16 bytes (3x compression on original data: 16x3=48 bytes)

▪ Can we do better?

Stanford CS348K, Fall 2018

S3TC
(Called BC1 or DXTC by Direct3D)

▪ Palette of four colors encoded in four bytes:
- Two low-precision base colors: C0 and C1 (2 bytes each: RGB 5-6-5 format)
- Other two colors computed from base values

- 1/3C0 + 2/3C1
- 2/3C0 + 1/3C1

▪ Total footprint of 4x4 texel block: 8 bytes
- 4 bytes for palette, 4 bytes of color ids (16 texels, 2 bits per texel)
- 4 bpp effective rate, 6:1 compression ratio (fixed ratio: independent of data values)

▪ S3TC assumption:
- All texels in a 4x4 block lie on a line in RGB color space

▪ Additional mode:
- If C0 < C1, then third color is 1/2C0 + 1/2C1 and fourth color is transparent black

Stanford CS348K, Fall 2018

S3TC artifacts

Original data Compressed result

Cannot interpolate red and blue to get green
(here compressor chose blue and yellow as base
colors to minimize overall error)

But scheme works well in practice on “real-world”
images. (see images at right)

Image credit:
http://renderingpipeline.com/2012/07/texture-compression/

S3TCOriginal (Zoom)Original

[Strom et al. 2007]

Stanford CS348K, Fall 2018

PACKMAN
▪ Block-based compression on 2x4 texel blocks

- Idea: vary luminance per texel, but specify single chrominance per block (similar idea
as YUV 4:0:0)

▪ Each block encoded as:
- A single base color per block (12 bits: RGB 4-4-4)
- 4-bit index identifying one of 16 predefined luminance modulation tables
- Per-texel 2-bit index into luminance modulation table (8x2=16 bits)
- Total block size = 12 + 4 + 16 = 32 bits (6:1 compression ratio)

▪ Decompression:
 texel[i] = base_color + table[table_id][table_index[i]];

Example codebook for modulation tables (8 of 16 tables shown)

[Strom et al. 2004]

Stanford CS348K, Fall 2018

iPackman (ETC)
▪ Improves on problems of heavily quantized and sparsely

represented chrominance in PACKMAN
- Higher resolution base color + differential color represents color more accurately

▪ Operates on 4x4 texel blocks
- Optionally represent 4x4 block as two eight-texel subblocks with differentials

(else use PACKMAN for two subblocks)

- 1 bit designates whether differential scheme is in use

- Base color for first block (RGB 5-5-5: 15 bits)

- Color differential for second block (RGB 3-3-3: 9 bits)

- 1 bit designating if subblocks are 4x2 or 2x4

- 3-bit index identifying modulation table per subblock (2x3 bits)

- Per-texel modulation table index (2x16 bits)

- Total compressed block size: 1 + 15 + 9 + 1 + 6 + 32 = 64 bits (6:1 ratio)

BaseRGB555 DeltaRGB333

[Strom et al. 2005]

Stanford CS348K, Fall 2018

PACKMAN vs. iPACKMAN quality comparison
iPACKMANPACMANOriginal

Chrominance banding

Chrominance block artifact

Image credit: Strom et al. 2005

Stanford CS348K, Fall 2018

PVRTC (Power VR texture compression)
▪ Not a block-based format

- Used in Imagination PowerVR GPUs
▪ Store low-frequency base images A and B

- Base images downsampled by factor of 4 in each dimension (1/16 fewer texels)
- Store base image pixels in RGB 5:5:5 format (+ 1 bit alpha)

▪ Store 2-bit modulation factor per texel
▪ Total footprint: 4 bpp (6:1 ratio)

[Fenney et al. 2003]

Stanford CS348K, Fall 2018

PVRTC
▪ Decompression algorithm:

- Bilinear interpolate samples from A and B (upsample) to get value at desired texel

- Interpolate upsampled values according to 2-bit modulation factor

[Fenney et al. 2003]

Stanford CS348K, Fall 2018

PVRTC avoids blocking artifacts

Image credit: Fenney et al. 2003

PVRTC

Because it is not block-based

Recall: decompression algorithm involves
bilinear upsampling of low-resolution base
images

(Followed by a weighted combination of the
two images)

Stanford CS348K, Fall 2018

Summary: texture compression
▪ Many schemes target 6:1 fixed compression ratio (4 bpp)

- Predictable performance
- 8 bytes per 4x4-texel block is desirable for memory transfers

▪ Lossy compression techniques
- Exploit characteristics of the human visual system to minimize perceived error
- Texture data is read only, so “drift” due to multiple reads/writes is not a concern

▪ Block-based vs. not-block based
- Block-based: S3TC/DXTC/BC1, iPACKMAN/ETC/ETC2, ASTC (not discussed today)
- Not-block-based: PVRTC

▪ We only discussed decompression today:
- Compression can be performed off-line (except when textures are generated at

runtime… e.g., reflectance maps)

Stanford CS348K, Fall 2018

GPU texture system summary
▪ A texture lookup is a lot more than a 2D array access

- Significant computational and bandwidth expense
- Implemented in specialized fixed-function hardware

▪ Bandwidth reduction mechanism: GPU texture caches
- Primarily serve to amplify limited DRAM bandwidth, not reduce latency to off-chip memory
- Small capacity compared to CPU caches, but high BW (need eight texels at once)
- Tiled rasterization order + tiled texture layout optimizations increase cache hits

▪ Bandwidth reduction mechanism: texture compression
- Lossy compression schemes
- Fixed-compression ratio encodings (e.g, 6:1 ratio, 4 bpp is common for RGB data)
- Schemes permit random access into compressed representation

▪ Latency avoidance/hiding mechanisms:
- Prefetching (in the old days)
- Multi-threading (in modern GPUs)

Stanford CS348K, Fall 2018

Bandwidth reduction techniques for
frame-buffer access

Stanford CS348K, Fall 2018

From last time: occlusion via the depth buffer

bool pass_depth_test(d1, d2) {
 return d1 < d2;
}

depth_test(tri_d, tri_color, x, y) {

 if (pass_depth_test(tri_d, zbuffer[x][y]) {

 zbuffer[x][y] = tri_d; // update zbuffer
 color[x][y] = tri_color; // update color buffer
 }
}

Stanford CS348K, Fall 2018

Z-buffer algorithm has high bandwidth requirements

▪ Particularly when super-sampling triangle coverage)
- Number of Z-buffer reads/writes for a frame depends on:

- Depth complexity of the scene
- The order triangles are provided to the graphics pipeline

(if depth test fails, don’t write to depth buffer or rgba)

▪ Bandwidth estimate:
- 60 Hz x 2 MPixel image x avg. depth complexity 4 (assume: replace 50% of time) x 32-bit Z

= 2.8 GB/s
- If super-sampling at 4 times per pixel, multiply by 4
- Consider five shadow maps per frame (1 MPixel, not super-sampled): additional 8.6 GB/s
- Note: this is just depth accesses. It does not include color-buffer bandwidth

▪ Modern GPUs implement caching and lossless compression of both
color and depth buffers to reduce bandwidth (coming slides)

Stanford CS348K, Fall 2018

Hierarchical early occlusion culling: “hi-Z”
Rasterize triangles in tiles (recall benefit to texture caching)

P0

P1

P2
Z-Max culling:
For each screen tile, compute farthest value in the depth
buffer: z_max

During traversal, for each tile:

1. Compute closest point on triangle in tile within
screen region of tile: tri_min

2. If tri_min > z_max, then triangle is
completely occluded in this tile. (The depth test
will fail for all samples in the tile.) Proceed to
next tile without performing coverage tests for
individual samples in tile.

Z-min optimization:

Depth-buffer also stores z_min for each tile.
If tri_max < z_min, then all depth tests for
fragments in tile will pass. (No need to perform depth
test on individual fragments!)

Stanford CS348K, Fall 2018

Hierarchical Z + early Z-culling

Rasterization

Fragment Processing

Frame-Buffer Ops

Depth-buffer

Zmin/max tile buffer

Per-tile values

Feedback: must update zmin/zmax
tiles on depth-buffer update

Remember: these are GPU implementation details
(common optimizations performed by most GPUs).
They are invisible to the programmer and not
reflected in the graphics pipeline abstraction

Stanford CS348K, Fall 2018

Depth-buffer compression

Stanford CS348K, Fall 2018

Depth-buffer compression
▪ Motivation: reduce bandwidth required for depth-buffer accesses

- Worst-case (uncompressed) buffer allocated in DRAM
- Conserving memory footprint is a non-goal

(Need for real-time guarantees in graphics applications requires application to
plan for worst case anyway)

▪ Requires lossless compression
- Question: why not lossy?

▪ Designed for fixed-point numbers (fixed-point math in rasterizer)

Stanford CS348K, Fall 2018

Depth-buffer compression is tile based
Main idea: exploit similarity of values within a screen tile

Figure credit: [Hasselgren et al. 2006]

On tile evict:
1. Compute zmin/zmax (needed for

hierarchical culling and/or compression)
2. Attempt to compress
3. Update tile table
4. Store tile to memory

On tile load:
1. Check tile table for compression scheme
2. Load required bits from memory
3. Decompress into tile cache

Stanford CS348K, Fall 2018

Anchor encoding
▪ Store value of “anchor pixel” p and compute Δx and Δy of adjacent pixels (fit

a plane to the data)

▪ Predict color of other pixels in tile based on offset from anchor

- value(i,j) = p + iΔx + jΔy

▪ Store “correction” ci on prediction at each pixel

▪ Scheme (for 24-bit depth buffer)

- Anchor: 24 bits (full resolution)

- DX, DY: 15 bits

- Per-sample offsets: 5 bits

[Van Dyke and Margeson]

p �x

�y

c0 c1

c2 c3 c4

c6 c7 c8c5

c10 c11 c12c9

Stanford CS348K, Fall 2018

Depth-offset compression
▪ Assume depth values have low dynamic range relative to tile’s

zmin and zmax (assume two surfaces)

▪ Store zmin/zmax (need to anyway for hierarchical Z)

▪ Store low-precision (8-12 bits) offset value for each sample
- MSB encodes if offset is from zmin or zmax

[Morein and Natali]

Stanford CS348K, Fall 2018

Explicit plane encoding
▪ Do not attempt to learn prediction plane from depths, just store the plane

equation for the triangle directly
- Store triangle plane equation in tile

- Store bit per sample indicating whether sample is covered by triangle

- Evaluate plane equation as necessary to “decompress”

▪ Simple extension to multiple triangles per tile:
- Store up to N plane equations in tile

- Store log2(N) bit id per depth sample indicating which triangle it belongs to

▪ When new triangle contributes coverage to tile:
- Add new plane equation if storage is available, else decompress

▪ To decompress:
- For each sample, evaluate Z(x,y) for appropriate plane

0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1

Stanford CS348K, Fall 2018

“Memory transaction elimination” in ARM GPUs
▪ Writing pixels in output image is a bandwidth-heavy operation
▪ Idea: skip output image write if it is unnecessary (color buffer compression!)
- Frame 1:

- Render frame tile at a time
- Compute hash of pixels in each tile on screen

- Frame 2:
- Render frame tile at a time
- Before storing pixel values for tile to memory,

compute hash and see if tile is the same as last frame
- If yes, skip memory write

Slow camera motion: 96% of writes avoided
Fast camera motion: ~50% of writes avoided

[Source: Tom Olson http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-
low-bandwidth-arm-mali-gpus]

http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus%5D
http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus%5D
http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus%5D

Stanford CS348K, Fall 2018

Summary: reducing the bandwidth requirements
of depth testing

▪ Caching: access DRAM less often (by caching depth buffer data)

▪ Hierarchical Z techniques (zmin/zmax culling): “early outs” result in
accessing individual sample data less often

▪ Data compression: reduce number of bits that must be transferred from
memory to read/write a depth sample

▪ The pipeline’s output color buffer (output image) is also compressed
using similar techniques
- Depth buffer typically achieves higher compression ratios than color

buffer. Why?

Stanford CS348K, Fall 2018

Cross-cutting issues
▪ Hierarchical traversal during rasterization

- Leveraged to reduce number of coverage tests and depth buffer accesses

- Tile size often coupled to hierarchical Z granularity

- May also be coupled to compression tile granularity

- Useful for improving texture cache hit rate

▪ Hierarchical culling and plane-based buffer compression are
most effective when triangles are reasonably large
- Modern GPU implementations are still optimized for triangles of area ~

tens of pixels

