
Visual Computing Systems
Stanford CS348K, Fall 2018

Lecture 13:

Processing Video at
Cloud Scale

Stanford CS348K, Fall 2018

More on specialization to input video

Stanford CS348K, Fall 2018

Follow on from last time
▪ Recall idea of NoScope: train a cheap model that is specialized for

contents a specific video stream (model distillation)

▪ Alternative (more traditional) specialization strategy: choose among
set of pretained models to find cheapest (sufficiently accurate)
model for the job
- “Knobs” to configure:

- Input image resolution
- Input image frame rate
- DNN to use (Resnet101, Resnet50, Inception, MobileNet, etc.)
- Thresholds on frame-to-frame difference detectors, etc.

Stanford CS348K, Fall 2018

Simple example
Appropriate frame-rate sampling
depends on whether cars are
moving

Stanford CS348K, Fall 2018

Challenge of distribution shift
▪ If distribution of video stream is non-stationary, up-front

specialized cheap model looses accuracy as contents of video
change (specialized model needs to be periodically changed)

Results from object detection
task on traffic camera video

Periodic update = every 4 seconds

Challenge: cost of profiling to
adaptively determine which
model to run eliminates
potential benefits of model
specialization

Stanford CS348K, Fall 2018

Reducing the cost of profiling
▪ Cost of profiling is running candidate models at points in

search space (profiling different values for all knobs)

▪ Idea 1: set of most-likely-to-be-good models changes slowly
over time

▪ Idea 2: similar streams have similar most-likely-to-be-good
candidate models

Stanford CS348K, Fall 2018

Employing idea 1
▪ Assume model updates every segment (e.g., 4 seconds)

▪ Profile all C model configurations for time segment 1
- Retain top-K configurations

▪ Profile only top-K configurations in future segments

▪ Reset after window of N segments

Let S be number of segments before reset (~4)
Let K be size of candidate set (K << C)
profiling cost = C + (N-1) x K << C x N Assumption: bad model

configurations tend to remain
bad for longer periods of time

Stanford CS348K, Fall 2018

Employing idea 2
▪ Assume many video cameras throughput a city

▪ Cluster cameras by how similar their streams are

▪ Only one camera per cluster needs to perform full profiling to
identify top-K candidate set
- Other cameras just perform top-K profiling

Assumption: bad model
configurations tend to remain
bad for longer periods of time

Stanford CS348K, Fall 2018

Intelligent profiling makes adaptivity profitable

Across dataset of multiple streetlight cameras,
when keeping accuracy similar, 2-3X speedup
compared to profiling once
(really, once per 150 seconds)

But really the problem with profiling once is that accuracy
is highly variable (see accuracy variance of blue crosses)

??

Stanford CS348K, Fall 2018

Managing video ingest at Facebook

Stanford CS348K, Fall 2018

Big video data

Facebook 2016:
100 million hours of video

watched per day

Youtube 2015: 300 hours
uploaded per minute [Youtube] FB Live Video

Twitch

Netflix

Snapchat Video

Stanford CS348K, Fall 2018

Facebook Streaming Video Engine (SVE)
▪ Designed for non-streaming video upload applications (not Facebook Live)

- Facebook video posts
- FB Messenger video shares
- Instagram Stories
- 360 videos

▪ Goals/requirements:

- Low latency: minimize latency of start of upload to sharable state
- Particularly important for FB Messenger uploads

- Flexible (support variety of applications such as those listed above, with
different processing pipelines after upload)

- Robust to faults and overload

Stanford CS348K, Fall 2018

Basic video sharing pipeline

Client
1

2. Video upload
3. Process

1. Record

5. Share Event

4. Store

6. Stream to viewerClient
2

(validation,
reencoding,

video analysis,
thumbnail extract)

Datacenter

Stanford CS348K, Fall 2018

Video upload and processing times *

SOSP ’17, October 28, 2017, Shanghai, China Q. Huang et al.

0
10
20
30
40
50
60
70
80
90
100

10-1 100 101 102 103 104

Pe
rc
en
til
e

Upload time (sec)

[min, 1M) [1, 3M) [3, 10M)

(a) Upload times (A–B). (b) MES encoding time (D–E). (c) MES load time (C–D).

Figure 4: Latency CDFs for the steps in the logical �ow of MES broken down for ranges from < 1MB to > 1GB.
The upload time (A–B) is the same for MES and SVE. Storage sync time (B–C) is described in §4.3. There is a single
legend across the three �gures.

(a) SVE encoding start delay (A–D). (b) SVE encoding time (D–E). (c) SVE per-video max fetch time.

Figure 5: Latency CDFs for the steps in the logical �ow of SVE broken down for ranges from < 1MB to > 1GB. The
upload time (A–B) is shown in Figure 4a. The storage time (B–C) is described in §4.3. Figure 5c shows the per-video
max latency across all fetches by workers from the preprocessor caches (similar to C–D in MES). There is a single
legend spread across the three �gures.

is a larger window over which the compression algorithm
can exploit temporal locality, but less parallelism because
there are fewer segments. We use a segment size of 10 sec-
onds for applications that prefer lower latency over the best
compression ratio—e.g., messaging and the subset of encod-
ings that drive News Feed noti�cations. We use a segment
size of 2 minutes for high quality encodings of large video
posts where a single digit percentage improvement on com-
pression is prioritized, as long as the latency does not exceed
a product-speci�ed limit.

Per-segment encoding requires converting processing that
executes over the entire video to execute on smaller video
segments. SVE achieves this by segmenting each video, with
each segment appearing to be a complete video. For videos
with constant frame rates and evenly distributed GOP bound-
aries, there is no need for additional coordination during

encoding. But, for variable frame rate videos, SVE needs to
adjust the encoding parameters for each segment based on
the context of all earlier segments—e.g., their frame count
and duration. Stitching the separately processed segments
back together requires a sequential pass over the video, but
fortunately this is lightweight and can be combined with a
pass that ensures the resulting video is well formed.

The high degree of parallelism in SVE can sometimes lead
to malformed videos when the original video has artifacts.
For instance, some editing tools set the audio starting time to
a negative value as a way to cut audio out, but our encoder
behaves di�erently when processing the audio track alone
than in the more typical case when it processes it together
with the video track. Another example is missing frame in-
formation that causes our segmentation process to fail to
generate the correct segment. Ensuring SVE can handle such

SOSP ’17, October 28, 2017, Shanghai, China Q. Huang et al.

0
10
20
30
40
50
60
70
80
90
100

10-1 100 101 102 103 104

Pe
rc
en
til
e

Upload time (sec)

[min, 1M) [1, 3M) [3, 10M)

(a) Upload times (A–B). (b) MES encoding time (D–E). (c) MES load time (C–D).

Figure 4: Latency CDFs for the steps in the logical �ow of MES broken down for ranges from < 1MB to > 1GB.
The upload time (A–B) is the same for MES and SVE. Storage sync time (B–C) is described in §4.3. There is a single
legend across the three �gures.

(a) SVE encoding start delay (A–D). (b) SVE encoding time (D–E). (c) SVE per-video max fetch time.

Figure 5: Latency CDFs for the steps in the logical �ow of SVE broken down for ranges from < 1MB to > 1GB. The
upload time (A–B) is shown in Figure 4a. The storage time (B–C) is described in §4.3. Figure 5c shows the per-video
max latency across all fetches by workers from the preprocessor caches (similar to C–D in MES). There is a single
legend spread across the three �gures.

is a larger window over which the compression algorithm
can exploit temporal locality, but less parallelism because
there are fewer segments. We use a segment size of 10 sec-
onds for applications that prefer lower latency over the best
compression ratio—e.g., messaging and the subset of encod-
ings that drive News Feed noti�cations. We use a segment
size of 2 minutes for high quality encodings of large video
posts where a single digit percentage improvement on com-
pression is prioritized, as long as the latency does not exceed
a product-speci�ed limit.

Per-segment encoding requires converting processing that
executes over the entire video to execute on smaller video
segments. SVE achieves this by segmenting each video, with
each segment appearing to be a complete video. For videos
with constant frame rates and evenly distributed GOP bound-
aries, there is no need for additional coordination during

encoding. But, for variable frame rate videos, SVE needs to
adjust the encoding parameters for each segment based on
the context of all earlier segments—e.g., their frame count
and duration. Stitching the separately processed segments
back together requires a sequential pass over the video, but
fortunately this is lightweight and can be combined with a
pass that ensures the resulting video is well formed.

The high degree of parallelism in SVE can sometimes lead
to malformed videos when the original video has artifacts.
For instance, some editing tools set the audio starting time to
a negative value as a way to cut audio out, but our encoder
behaves di�erently when processing the audio track alone
than in the more typical case when it processes it together
with the video track. Another example is missing frame in-
formation that causes our segmentation process to fail to
generate the correct segment. Ensuring SVE can handle such

SOSP ’17, October 28, 2017, Shanghai, China Q. Huang et al.

(a) Upload times (A–B).

0
10
20
30
40
50
60
70
80
90
100

100 101 102 103 104

Pe
rc
en
til
e

Encode time (sec)

[10, 30M) [30, 100M) [100, 300M)

(b) MES encoding time (D–E).

0
10
20
30
40
50
60
70
80
90
100

10-2 10-1 100 101 102 103

Pe
rc
en
til
e

Load time (sec)

[300M, 1G) [1G, max)

(c) MES load time (C–D).

Figure 4: Latency CDFs for the steps in the logical �ow of MES broken down for ranges from < 1MB to > 1GB.
The upload time (A–B) is the same for MES and SVE. Storage sync time (B–C) is described in §4.3. There is a single
legend across the three �gures.

(a) SVE encoding start delay (A–D). (b) SVE encoding time (D–E). (c) SVE per-video max fetch time.

Figure 5: Latency CDFs for the steps in the logical �ow of SVE broken down for ranges from < 1MB to > 1GB. The
upload time (A–B) is shown in Figure 4a. The storage time (B–C) is described in §4.3. Figure 5c shows the per-video
max latency across all fetches by workers from the preprocessor caches (similar to C–D in MES). There is a single
legend spread across the three �gures.

is a larger window over which the compression algorithm
can exploit temporal locality, but less parallelism because
there are fewer segments. We use a segment size of 10 sec-
onds for applications that prefer lower latency over the best
compression ratio—e.g., messaging and the subset of encod-
ings that drive News Feed noti�cations. We use a segment
size of 2 minutes for high quality encodings of large video
posts where a single digit percentage improvement on com-
pression is prioritized, as long as the latency does not exceed
a product-speci�ed limit.

Per-segment encoding requires converting processing that
executes over the entire video to execute on smaller video
segments. SVE achieves this by segmenting each video, with
each segment appearing to be a complete video. For videos
with constant frame rates and evenly distributed GOP bound-
aries, there is no need for additional coordination during

encoding. But, for variable frame rate videos, SVE needs to
adjust the encoding parameters for each segment based on
the context of all earlier segments—e.g., their frame count
and duration. Stitching the separately processed segments
back together requires a sequential pass over the video, but
fortunately this is lightweight and can be combined with a
pass that ensures the resulting video is well formed.

The high degree of parallelism in SVE can sometimes lead
to malformed videos when the original video has artifacts.
For instance, some editing tools set the audio starting time to
a negative value as a way to cut audio out, but our encoder
behaves di�erently when processing the audio track alone
than in the more typical case when it processes it together
with the video track. Another example is missing frame in-
formation that causes our segmentation process to fail to
generate the correct segment. Ensuring SVE can handle such

SOSP ’17, October 28, 2017, Shanghai, China Q. Huang et al.

(a) Upload times (A–B). (b) MES encoding time (D–E).

0
10
20
30
40
50
60
70
80
90
100

10-2 10-1 100 101 102 103

Pe
rc
en
til
e

Load time (sec)

[300M, 1G) [1G, max)

(c) MES load time (C–D).

Figure 4: Latency CDFs for the steps in the logical �ow of MES broken down for ranges from < 1MB to > 1GB.
The upload time (A–B) is the same for MES and SVE. Storage sync time (B–C) is described in §4.3. There is a single
legend across the three �gures.

(a) SVE encoding start delay (A–D). (b) SVE encoding time (D–E). (c) SVE per-video max fetch time.

Figure 5: Latency CDFs for the steps in the logical �ow of SVE broken down for ranges from < 1MB to > 1GB. The
upload time (A–B) is shown in Figure 4a. The storage time (B–C) is described in §4.3. Figure 5c shows the per-video
max latency across all fetches by workers from the preprocessor caches (similar to C–D in MES). There is a single
legend spread across the three �gures.

is a larger window over which the compression algorithm
can exploit temporal locality, but less parallelism because
there are fewer segments. We use a segment size of 10 sec-
onds for applications that prefer lower latency over the best
compression ratio—e.g., messaging and the subset of encod-
ings that drive News Feed noti�cations. We use a segment
size of 2 minutes for high quality encodings of large video
posts where a single digit percentage improvement on com-
pression is prioritized, as long as the latency does not exceed
a product-speci�ed limit.

Per-segment encoding requires converting processing that
executes over the entire video to execute on smaller video
segments. SVE achieves this by segmenting each video, with
each segment appearing to be a complete video. For videos
with constant frame rates and evenly distributed GOP bound-
aries, there is no need for additional coordination during

encoding. But, for variable frame rate videos, SVE needs to
adjust the encoding parameters for each segment based on
the context of all earlier segments—e.g., their frame count
and duration. Stitching the separately processed segments
back together requires a sequential pass over the video, but
fortunately this is lightweight and can be combined with a
pass that ensures the resulting video is well formed.

The high degree of parallelism in SVE can sometimes lead
to malformed videos when the original video has artifacts.
For instance, some editing tools set the audio starting time to
a negative value as a way to cut audio out, but our encoder
behaves di�erently when processing the audio track alone
than in the more typical case when it processes it together
with the video track. Another example is missing frame in-
formation that causes our segmentation process to fail to
generate the correct segment. Ensuring SVE can handle such

File size of video

SOSP ’17, October 28, 2017, Shanghai, China Q. Huang et al.

0
10
20
30
40
50
60
70
80
90
100

10-1 100 101 102 103 104

Pe
rc
en
til
e

Upload time (sec)

[min, 1M) [1, 3M) [3, 10M)

(a) Upload times (A–B).

0
10
20
30
40
50
60
70
80
90
100

100 101 102 103 104
Pe
rc
en
til
e

Encode time (sec)

[10, 30M) [30, 100M) [100, 300M)

(b) MES encoding time (D–E). (c) MES load time (C–D).

Figure 4: Latency CDFs for the steps in the logical �ow of MES broken down for ranges from < 1MB to > 1GB.
The upload time (A–B) is the same for MES and SVE. Storage sync time (B–C) is described in §4.3. There is a single
legend across the three �gures.

(a) SVE encoding start delay (A–D). (b) SVE encoding time (D–E). (c) SVE per-video max fetch time.

Figure 5: Latency CDFs for the steps in the logical �ow of SVE broken down for ranges from < 1MB to > 1GB. The
upload time (A–B) is shown in Figure 4a. The storage time (B–C) is described in §4.3. Figure 5c shows the per-video
max latency across all fetches by workers from the preprocessor caches (similar to C–D in MES). There is a single
legend spread across the three �gures.

is a larger window over which the compression algorithm
can exploit temporal locality, but less parallelism because
there are fewer segments. We use a segment size of 10 sec-
onds for applications that prefer lower latency over the best
compression ratio—e.g., messaging and the subset of encod-
ings that drive News Feed noti�cations. We use a segment
size of 2 minutes for high quality encodings of large video
posts where a single digit percentage improvement on com-
pression is prioritized, as long as the latency does not exceed
a product-speci�ed limit.

Per-segment encoding requires converting processing that
executes over the entire video to execute on smaller video
segments. SVE achieves this by segmenting each video, with
each segment appearing to be a complete video. For videos
with constant frame rates and evenly distributed GOP bound-
aries, there is no need for additional coordination during

encoding. But, for variable frame rate videos, SVE needs to
adjust the encoding parameters for each segment based on
the context of all earlier segments—e.g., their frame count
and duration. Stitching the separately processed segments
back together requires a sequential pass over the video, but
fortunately this is lightweight and can be combined with a
pass that ensures the resulting video is well formed.

The high degree of parallelism in SVE can sometimes lead
to malformed videos when the original video has artifacts.
For instance, some editing tools set the audio starting time to
a negative value as a way to cut audio out, but our encoder
behaves di�erently when processing the audio track alone
than in the more typical case when it processes it together
with the video track. Another example is missing frame in-
formation that causes our segmentation process to fail to
generate the correct segment. Ensuring SVE can handle such

* Serialized times (SVE system will parallelize encoding across segments as discussed in a few slides)

Stanford CS348K, Fall 2018

Pipelining upload and processing
▪ Client application partitions video into segments prior to upload
▪ Client application optionally downsamples video (skipped if video recorded at low enough

resolution, internet connection is fast, or device does not support HW accelerated encode)
▪ Upload and processing of video is pipelined (upload and processing is mostly parallelized)
▪ Processing itself can be parallelized across segments

Seg
1

Seg
2

Seg
3

Seg
4

Seg
5

Seg
6

Time

= upload

= store

= processing

Stanford CS348K, Fall 2018

DAG representation of processingSOSP ’17, October 28, 2017, Shanghai, China Q. Huang et al.

SD
Encoding

Combine
Tracks

Notification

SD
Encoding

HD
Encoding

Analysis

Audio

Metadata

Video
Thumbnail
Generation

TasksTracks

Count
Segments

Video
Classification

Task Group
Original

Count
Segments

Figure 7: Simpli�ed DAG for processing videos.
Grayed tasks run for each segment of the video track.

granularity of both tasks and their inputs controls the com-
plexity/parallelism tradeo� and is speci�ed as a subset of a
stream-of-tracks.

The stream-of-tracks abstraction provides two dimensions
of granularity that re�ect the structure of videos. The �rst
dimension is the tracks within a video, e.g., the video track
and the audio track. Tasks can operate on either one track in-
dividually or all tracks together. Specifying a task to operate
on an individual track enables SVE to extract some paral-
lelism and is simple for programmers. For example, speech
recognition only requires the audio track while thumbnail
extraction and facial recognition only require the video track.
Specifying these tasks to operate on only their required track
allows SVE to parallelize their execution without increasing
the burden on the programmer because the processing tasks
do not need to be rewritten.

The second dimension of granularity is the stream of data
within a track, e.g., GOP-based segments within a video track.
This dimension exposes more parallelism, but increases com-
plexity because it requires tasks that can operate at the gran-
ularity of individual segments. For instance, enabling re-
encoding tasks to operate on segments required us to modify
the �mpeg commands we used and required us to add a
new task that stitches together the segmented video into a
single video. Computer vision based video classi�cation is
an example of a task that it would be di�cult to convert to
operate at the segment level. Our classi�er operates on the
full video and does things like track objects across frames.
Reengineering this classi�er to operate across segments and
then combine the di�erent results would be complex.
Figure 7 shows a simpli�ed version of the DAG for pro-

cessing videos to be shared on Facebook. The initial video is
split into tracks for video, audio, and metadata. The video
and audio tracks are then copied n times, one for each of the
n encoding bitrates (n = 2 for video, 1 for audio) in the �g-
ure. At this point, the re-encoding tasks, which are the most

pipeline = create_pipeline(video)

video_track = pipeline.create_video_track()
if video.should_encode_hd

hd_video = video_track.add(hd_encoding)
.add(count_segments)

sd_video = video_track.add(
{sd_encoding, thumbnail_generation},

).add(count_segments)

audio_track = pipeline.create_audio_track()
sd_audio = audio_track.add(sd_encoding)

meta_track =
pipeline.create_metadata_track()
.add(analysis)

pipeline.sync_point(
{hd_video, sd_video, sd_audio},
combine_tracks,

).add(notify, �latency_sensitive�)
.add(video_classification)

Figure 8: Pseudo-code for generating the simpli�ed
DAG. Dependencies in the DAG are encoded by chain-
ing tasks. Branches of the DAG can be merged with
sync points. Tasks can also be annotated easily, e.g.,
specifying the notify task to be latency sensitive.

computationally intensive, are operating at the maximum
parallelism: segments of individual tracks. Thumbnail gener-
ation, which is also moderately time consuming, is grouped
inside the SD encoding task group to be executed at segment
level, without incurring an additional video track copy. The
output segments of each track are checked after they �nish
encoding in parallel, by the “count segments” tasks as a syn-
chronization point. Then all the tracks are joined for storage,
before the user is noti�ed their video is ready to be shared.
Some processing on the full video typically happens after
the noti�cation, such as video classi�cation.
The DAG in Figure 7 follows the typical pattern of our

DAGs: split into tracks, segment, split into encodings, collect
segments, join segments, and then join tracks. This structure
enables the most parallelism for the most computationally
intensive tasks, which are re-encodings. It also provides a
simple way for programmers to add most tasks. Most tasks
operate over the fully joined tracks, which is even simpler
to reason about than one big script. This provides SVE with
most of the best of both worlds of parallelism and simplic-
ity: parallelism is enabled for the few tasks that dominate
processing time, which gives us most of the bene�ts of par-
allelism without requiring programmers to reason about
parallelism for more than a few tasks.

SOSP ’17, October 28, 2017, Shanghai, China Q. Huang et al.

SD
Encoding

Combine
Tracks

Notification

SD
Encoding

HD
Encoding

Analysis

Audio

Metadata

Video
Thumbnail
Generation

TasksTracks

Count
Segments

Video
Classification

Task Group
Original

Count
Segments

Figure 7: Simpli�ed DAG for processing videos.
Grayed tasks run for each segment of the video track.

granularity of both tasks and their inputs controls the com-
plexity/parallelism tradeo� and is speci�ed as a subset of a
stream-of-tracks.

The stream-of-tracks abstraction provides two dimensions
of granularity that re�ect the structure of videos. The �rst
dimension is the tracks within a video, e.g., the video track
and the audio track. Tasks can operate on either one track in-
dividually or all tracks together. Specifying a task to operate
on an individual track enables SVE to extract some paral-
lelism and is simple for programmers. For example, speech
recognition only requires the audio track while thumbnail
extraction and facial recognition only require the video track.
Specifying these tasks to operate on only their required track
allows SVE to parallelize their execution without increasing
the burden on the programmer because the processing tasks
do not need to be rewritten.

The second dimension of granularity is the stream of data
within a track, e.g., GOP-based segments within a video track.
This dimension exposes more parallelism, but increases com-
plexity because it requires tasks that can operate at the gran-
ularity of individual segments. For instance, enabling re-
encoding tasks to operate on segments required us to modify
the �mpeg commands we used and required us to add a
new task that stitches together the segmented video into a
single video. Computer vision based video classi�cation is
an example of a task that it would be di�cult to convert to
operate at the segment level. Our classi�er operates on the
full video and does things like track objects across frames.
Reengineering this classi�er to operate across segments and
then combine the di�erent results would be complex.
Figure 7 shows a simpli�ed version of the DAG for pro-

cessing videos to be shared on Facebook. The initial video is
split into tracks for video, audio, and metadata. The video
and audio tracks are then copied n times, one for each of the
n encoding bitrates (n = 2 for video, 1 for audio) in the �g-
ure. At this point, the re-encoding tasks, which are the most

pipeline = create_pipeline(video)

video_track = pipeline.create_video_track()
if video.should_encode_hd

hd_video = video_track.add(hd_encoding)
.add(count_segments)

sd_video = video_track.add(
{sd_encoding, thumbnail_generation},

).add(count_segments)

audio_track = pipeline.create_audio_track()
sd_audio = audio_track.add(sd_encoding)

meta_track =
pipeline.create_metadata_track()
.add(analysis)

pipeline.sync_point(
{hd_video, sd_video, sd_audio},
combine_tracks,

).add(notify, �latency_sensitive�)
.add(video_classification)

Figure 8: Pseudo-code for generating the simpli�ed
DAG. Dependencies in the DAG are encoded by chain-
ing tasks. Branches of the DAG can be merged with
sync points. Tasks can also be annotated easily, e.g.,
specifying the notify task to be latency sensitive.

computationally intensive, are operating at the maximum
parallelism: segments of individual tracks. Thumbnail gener-
ation, which is also moderately time consuming, is grouped
inside the SD encoding task group to be executed at segment
level, without incurring an additional video track copy. The
output segments of each track are checked after they �nish
encoding in parallel, by the “count segments” tasks as a syn-
chronization point. Then all the tracks are joined for storage,
before the user is noti�ed their video is ready to be shared.
Some processing on the full video typically happens after
the noti�cation, such as video classi�cation.
The DAG in Figure 7 follows the typical pattern of our

DAGs: split into tracks, segment, split into encodings, collect
segments, join segments, and then join tracks. This structure
enables the most parallelism for the most computationally
intensive tasks, which are re-encodings. It also provides a
simple way for programmers to add most tasks. Most tasks
operate over the fully joined tracks, which is even simpler
to reason about than one big script. This provides SVE with
most of the best of both worlds of parallelism and simplic-
ity: parallelism is enabled for the few tasks that dominate
processing time, which gives us most of the bene�ts of par-
allelism without requiring programmers to reason about
parallelism for more than a few tasks.

DAG Specification in Python:

Simple DAG:
Encodes HD and SD version of uploaded video

Facebook Video Posts: ~153 tasks
Messenger shares: 18 tasks
Instagram stories: 22 tasks

DAG node = “task”
Each task is executed serially on one video segment
Overall DAG execution can be parallelized
(across tracks and segments)

Nodes defined on audio, video, metadata tracks:

Stanford CS348K, Fall 2018

Coarse-grained parallel video encoding
▪ Parallelized across segments (I-frame inserted at start of segment)
▪ Concatenate independently encoded bitstreams

Task 1
(encode 0-2 min)

Task 2
(encode 2-4 min)

Task 3
(encode 4-6 min)

Task 4
(encode 6-8 min)

Task 5
concat

Smaller segments = more potential parallelism, worse video compression
Latency-sensitive applications: 10 second segments
Non-latency sensitive, long videos: 2 minute segments (maximize compression)

Stanford CS348K, Fall 2018

Overload control
▪ When FB cannot keep up with the world’s video upload rate…

▪ Delay latency-insensitive tasks

▪ Rebalance load: redirect uploads to new datacenter region

▪ Delay processing of new uploads

Stanford CS348K, Fall 2018

Scanner: batch video analytics

Emerging “big” video applications

Synthesizing VR video Drone 3D reconstructionVehicular video analysis

Markerless motion capture Computational video editing Auto-checkout shopping

Facebook Surround360 VR video

Input:
14 cameras, 2048 x 2048

300 GB / minute

Left Eye

Right Eye

Output:
8K Panoramic Video

Facebook Surround360 VR video

Left Eye

Right Eye

…

44 Stages

{ WarpWarp Warp Warp

Flow10

Synth Synth …

Flow10 Flow10

Synth

Concat Concat

Dependencies
over Time

Cross-video
stream
dependencies

6.7 compute hours per min of
output video on a 32 core CPU

https://code.fb.com/video-engineering/surround-360-is-now-open-source/

24 compute hours / min of
video on a Titan X

[Joo 15]

Markerless human motion capture

Video analytics

Actor co-occurrenceLocating action shots

https://medium.com/netflix-techblog/ava-the-art-and-science-of-image-discovery-at-netflix-a442f163af6

Example: film content analytics

Three common properties

Left Eye

Right Eye

Large video collections

Existing tools

HalideCUDA

GL TF

Clusters of machines
CPUs
GPUs

Scanner: a system for...

1. Productively developing big video data
applications

2. Efficiently executing these applications at scale

Axes of scalability

100s of films
100k Youtube

video clips

Data scalability

Single
video

10s of concurrent
streams

Compute scalability

4-GPU Desktop

Laptop
100s of

Machines

Scanner overview

Directory of videos

movies/star_wars.mp4
movies/mean_girls.mp4
movies/pulp_fiction.mp4
…
movies/the_shining.mp4

Organize videos as tables

table table

Construct applications as data flow
graphsLibrary of useful functions

Image Resize MaskRCNN

OpenPoseOptical flow

Depth Est.
(CUDA)
Tracker

impl: Halide

impl: OpenCV impl: C++

impl: CUDA impl: Pytorch

impl: Caffe

frame_id
table: star_wars

frame
table: mean_girls table: the_shining

…

frameframeframe_id frame_id

Simple example: track player over time

Video processing as a data flow graph
frameid

objectsid

Resize
impl: Halide

Detect
impl: Pytorch

Sample
stride = 3

Space
stride = 3

Track
impl: C++

Subsample to 10 FPS

Read 30 FPS video

Resize for DNN detector

Detect person using DNN

Align with 30 FPS video

Track at 30 FPS

Save tracked boxes

db = scanner.Database()
video_tables = db.ingest_videos(videos)

frame = db.sources.Column(video_tables[0])

sparse_frames = db.streams.Stride(frame, 3)

transformed = db.ops.Transform(
 frame = sparse_frames,
 width = 496, height = 398,
 device = GPU)

detections = db.ops.Detect(
 frame = transformed,
 model = ‘face_dnn.prototxt’,
 batch = 8,
 device = GPU)

frame_detections = db.streams.Space(detections, 3)

faces = db.ops.Track(
 frame = frame,
 detections = frame_detections,
 warmup = 20,
 device = CPU)

output = db.sinks.Column(faces)

Mapping over streams

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

frameid

Resize
impl: Halide8 CPUs

objectsid

Detect
impl: Pytorch1 GPU

Sampling streams

Resize
impl: Halide

frameid

objectsid

Detect
impl: Pytorch

Sampling streams

Resize
impl: Halide

frameid

objectsid

Sample
stride = 3

Detect
impl: Pytorch

0 1 2 3

0 1 2 3

0 1 2 3 4 5 6 7 8 9

0 1 2 3

Sampling streams

Resize
impl: Halide

frameid

objectsid

0 1 2 3

0 1 2 3

0 1 2 3 4 5 6 7 8 9

0 1 2 3

Sample
stride = 3

Detect
impl: Pytorch

0 1 2 3 4 5 6 7 8 9

Space
stride = 3

Stateful processing

3

Resize
impl: Halide

frameid

0 1 2 3

0 1 2 3

0 1 2 3 4 5 6 7 8 9

0 1 2 3

Sample
stride = 3

Detect
impl: Pytorch

0 1 2 3 4 5 6 7 8 9

Space
stride = 3

objectsid

Track
impl: C++

0 1 2 3 4 5 6 7 8 9

Additional operations

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 10

frameid frameid

Temporal Filter
impl: C++S[-1, 1]

Depth Est.
impl: C++

0 1 2 3 4 5 6 7 8 9 10

Scanner data flow operators

Scanner runtime schedules computation
graphs onto CPU/GPU clusters

Approximating stateful processing
to increase parallelism

0 1 2 3

0 1 2 3

4 5 6 7

4 5 6 7

8 9 10

8 9 10

frameid

objectsid

2 Track
impl: C++

0 1 2 3

0 1 2 3

4 5 6 7

4 5 6 7

8 9 10

8 9 10

frameid

objectsid

2 Track
impl: C++

Approximating stateful processing
to increase parallelism

0 1 2 3

0 1 2 3

4 5 6 7

4 5 6 7

8 9 10

8 9 10

2 3 6 7

frameid

objectsid

2 Track
impl: C++

Approximating stateful processing
to increase parallelism

Per-element dependency analysis

0 1 2 3 4 5 6 7 8 9 10

frameid

0 1 2 3 4 5 6 7 8 9 10

Resize
impl: CUDA

Sample

0 1 2 3

0, 4, 8, 9

0 1 2 3 4 5 6 7 8 9

S[0,1] impl: OpenCV
Flow

Per-element dependency analysis

0 1 2 3 4 5 6 7 8 9 10

frameid

0 1 2 3 4 5 6 7 8 9 10

Resize
impl: CUDA

Sample

0 1 2 3

0, 4, 8, 9

0 1 2 3 4 5 6 7 8 9

S[0,1] impl: OpenCV
Flow

Per-element dependency analysis

0 1 3 4 8 9 10

frameid

0 1 3 4 8 9 10

Resize
impl: CUDA

Sample

0 1 2 3

0, 4, 8, 9

0 3 8 9

S[0,1] impl: OpenCV
Flow

Efficient access to sparse frames

frameid

Improves decode throughput by 2 - 14x for sparse access patterns

0 1 3 4 8 9 10

frame 0
(keyframe)

byte 0

frame 2
(keyframe)

byte 4840

frame 5
(keyframe)

byte 6796

frame 7
(keyframe)

byte
11284

(end)
frame 10

(keyframe)

byte
12480

Using many machines for quick
turnaround when running inference

Analyzing a 2 hour 1080p movie

1 K80 GPU: 55.3 mins

75 K80 GPUs: 123 secs

* Benchmark: running OpenPose on all frames

Scanner scales when processing
large datasets

GPUs
20 100 200

2.5

5

10

12.5

7.5

657 Movies
70k TV Clips

Throughput when processing large datasets

Th
ro

ug
hp

ut
(re

la
tiv

e
to

 2
0

G
PU

s) Linear scaling

* Benchmark: running OpenPose on all frames

Accelerating the 3D human pose
reconstruction pipeline

Processing 1 minute from 480 cameras

1 Titan X GPU: 24 hours
Grad-student baseline

4 Titan X GPUs: 10.5 hours

4 Titan X GPUs: 3.9 hours
Scanner implementation

200 K80 GPUs: 37.5 mins

Scaling Surround360 video

Left Eye

Right Eye

…

WarpWarp Warp Warp

Flow10

Synth Synth …
Flow10 Flow10

Synth

Concat Concat

Processing 1 minute of video:

32-core CPU: 6.7 hours

Facebook’s Implementation

Scanner Implementation

32-core CPU: 2.7 hours

8 32-core CPUs: 18 mins

Stanford CS348K, Fall 2018

Cloud vision services
▪ “Turnkey” service solutions:

- User uploads video
- Service returns annotations/labels

Stanford CS348K, Fall 2018

Today’s summary
▪ Increasing interest in cloud-scale infrastructure for processing

large amounts of video at scale

▪ Today’s examples:
- Processing many streetlight camera feeds
- Ingest at Facebook
- Batch processing with Scanner

▪ But don’t forget… algorithmic innovation is always a way to do
more without scaling up system size.

