Lecture 13:
Processing Video at Cloud Scale

Visual Computing Systems
Stanford CS348K, Fall 2018
More on specialization to input video
Follow on from last time

- Recall idea of NoScope: train a cheap model that is specialized for contents a specific video stream (model distillation)

- Alternative (more traditional) specialization strategy: choose among set of pretrained models to find cheapest (sufficiently accurate) model for the job
 - “Knobs” to configure:
 - Input image resolution
 - Input image frame rate
 - DNN to use (Resnet101, Resnet50, Inception, MobileNet, etc.)
 - Thresholds on frame-to-frame difference detectors, etc.
Simple example

Appropriate frame-rate sampling depends on whether cars are moving
Challenge of distribution shift

- If distribution of video stream is non-stationary, up-front specialized cheap model looses accuracy as contents of video change (specialized model needs to be periodically changed)

Results from object detection task on traffic camera video

Periodic update = every 4 seconds

Challenge: cost of profiling to adaptively determine which model to run eliminates potential benefits of model specialization
Reducing the cost of profiling

- Cost of profiling is running candidate models at points in search space (profiling different values for all knobs)

- Idea 1: set of most-likely-to-be-good models changes slowly over time

- Idea 2: similar streams have similar most-likely-to-be-good candidate models
Empowering idea 1

- Assume model updates every segment (e.g., 4 seconds)
- Profile all C model configurations for time segment 1
 - Retain top-K configurations
- Profile only top-K configurations in future segments
- Reset after window of N segments

Let S be number of segments before reset (~4)
Let K be size of candidate set (K << C)
profiling cost = C + (N-1) x K << C x N

Assumption: bad model configurations tend to remain bad for longer periods of time
Emploing idea 2

- Assume many video cameras throughout a city
- Cluster cameras by how similar their streams are
- Only one camera per cluster needs to perform full profiling to identify top-K candidate set
 - Other cameras just perform top-K profiling

Assumption: bad model configurations tend to remain bad for longer periods of time
Intelligent profiling makes adaptivity profitable

Across dataset of multiple streetlight cameras, when keeping accuracy similar, 2-3X speedup compared to profiling once (really, once per 150 seconds)

But really the problem with profiling once is that accuracy is highly variable (see accuracy variance of blue crosses)
Managing video ingest at Facebook
Big video data

Facebook 2016: 100 million hours of video watched per day

Youtube 2015: 300 hours uploaded per minute [Youtube]

Snapchat Video

FB Live Video

Netflix

Twitch
Facebook Streaming Video Engine (SVE)

- Designed for non-streaming video upload applications (not Facebook Live)
 - Facebook video posts
 - FB Messenger video shares
 - Instagram Stories
 - 360 videos

- Goals/requirements:
 - Low latency: minimize latency of start of upload to sharable state
 - Particularly important for FB Messenger uploads
 - Flexible (support variety of applications such as those listed above, with different processing pipelines after upload)
 - Robust to faults and overload
Basic video sharing pipeline

1. Record

Client 1

2. Video upload

2. Video upload

Datacenter

3. Process
(validation, reencoding, video analysis, thumbnail extract)

4. Store

5. Share Event

Client 2

6. Stream to viewer
Video upload and processing times

File size of video

- [min, 1M)
- [1, 3M)
- [3, 10M)
- [10, 30M)
- [30, 100M)
- [100, 300M)
- [300M, 1G)
- [1G, max)

Serialized times (SVE system will parallelize encoding across segments as discussed in a few slides)
Pipelining upload and processing

- Client application partitions video into segments prior to upload
- Client application optionally downsamples video (skipped if video recorded at low enough resolution, internet connection is fast, or device does not support HW accelerated encode)
- Upload and processing of video is pipelined (upload and processing is mostly parallelized)
- Processing itself can be parallelized across segments
DAG representation of processing

DAG node = "task"
Each task is executed serially on one video segment
Overall DAG execution can be parallelized
(across tracks and segments)

Facebook Video Posts: ~153 tasks
Messenger shares: 18 tasks
Instagram stories: 22 tasks
Coarse-grained parallel video encoding

- Parallelized across segments (I-frame inserted at start of segment)
- Concatenate independently encoded bitstreams

Task 1
(encode 0-2 min)

Task 2
(encode 2-4 min)

Task 3
(encode 4-6 min)

Task 4
(encode 6-8 min)

Task 5
concat

Smaller segments = more potential parallelism, worse video compression
Latency-sensitive applications: 10 second segments
Non-latency sensitive, long videos: 2 minute segments (maximize compression)
Overload control

- When FB cannot keep up with the world’s video upload rate...
- Delay latency-insensitive tasks
- Rebalance load: redirect uploads to new datacenter region
- Delay processing of new uploads
Scanner: batch video analytics
Emerging “big” video applications

Synthesizing VR video

Vehicular video analysis

Drone 3D reconstruction

Markerless motion capture

Computational video editing

Auto-checkout shopping
Facebook Surround360 VR video

Input:
14 cameras, 2048 x 2048
300 GB / minute

Output:
8K Panoramic Video
Facebook Surround360 VR video

44 Stages

Warp

Warp

Warp

Warp

Flow

Flow

Flow

Flow

Synth

Synth

Synth

Synth

Concat

Concat

Dependencies over Time

Cross-video stream dependencies

6.7 compute hours per min of output video on a 32 core CPU

https://code.fb.com/video-engineering/surround-360-is-now-open-source/
Markerless human motion capture

24 compute hours / min of video on a Titan X
Video analytics

Example: film content analytics

Locating action shots

Actor co-occurrence

Three common properties

Large video collections

Existing tools
- CUDA
- Halide
- GL
- TF

Clusters of machines
- CPUs
- GPUs
Scanner: a system for...

1. Productively developing big video data applications

2. Efficiently executing these applications at scale
Axes of scalability

Data scalability
- 10s of concurrent streams
- Single video
- 100s of films
- 100k Youtube video clips

Compute scalability
- 4-GPU Desktop
- Laptop
- 100s of Machines
Scanner overview

Directory of videos

movies/star_wars.mp4
movies/mean_girls.mp4
movies/pulp_fiction.mp4
...
movies/the_shining.mp4

Organize videos as tables

<table>
<thead>
<tr>
<th>frame_id</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>frame_id</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>frame_id</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Library of useful functions

- Image Resize (impl: Halide)
- Depth Est. (impl: CUDA)
- MaskRCNN (impl: Pytorch)
- Optical flow (impl: OpenCV)
- Tracker (impl: C++)
- OpenPose (impl: Caffe)

Construct applications as data flow graphs
Simple example: track player over time
Read 30 FPS video

Subsample to 10 FPS

Resize for DNN detector

Detect person using DNN

Align with 30 FPS video

Track at 30 FPS

Save tracked boxes

db = scanner.Database()
video_tables = db.ingest_videos(videos)
frame = db.sources.Column(video_tables[0])
sparse_frames = db.streams.Stride(frame, 3)
transformed = db.ops.Transform(
 frame = sparse_frames,
 width = 496, height = 398,
 device = GPU)
detections = db.ops.Detect(
 frame = transformed,
 model = 'face_dnn.prototxt',
 batch = 8,
 device = GPU)
frame_detections = db.streams.Space(detections, 3)
faces = db.ops.Track(
 frame = frame,
 detections = frame_detections,
 warmup = 20,
 device = CPU)
output = db.sinks.Column(faces)
Mapping over streams

<table>
<thead>
<tr>
<th>id</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8 CPUs

- **Resize**
 - impl: Halide

1 GPU

- **Detect**
 - impl: Pytorch

<table>
<thead>
<tr>
<th>id</th>
<th>objects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sampling streams

<table>
<thead>
<tr>
<th>id</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resize

impl: Halide

Detect

impl: Pytorch

<table>
<thead>
<tr>
<th>id</th>
<th>objects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sampling streams

<table>
<thead>
<tr>
<th>id</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample

strided = 3

Resize

impl: Halide

Detect

impl: Pytorch

<table>
<thead>
<tr>
<th>id</th>
<th>objects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sampling streams

<table>
<thead>
<tr>
<th>id</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample

- stride = 3

Resize

- impl: Halide

Detect

- impl: Pytorch

Space

- stride = 3
Stateful processing

<table>
<thead>
<tr>
<th>id</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample
stride = 3

Resize
impl: Halide

Detect
impl: Pytorch

Space
stride = 3

Track
impl: C++
Additional operations

<table>
<thead>
<tr>
<th>id</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temporal Filter
impl: C++

Depth Est.
impl: C++
Scanner data flow operators

- Map (with batch)
 - Detect
 - Flow
- Stencil
 - Sample (stride = 3)
- Strided Sampling
 - Sample (stride = 3)
- Strided Spacing
 - Space (stride = 3)

- Dense Strided Stencil
 - Resize
 - Flow
 - Sample (stride = 3)
- Sparse Strided Stencil
 - Sample (stride = 3)
 - Resize
 - Flow
 - Sample (stride = 3)
- Bounded State
 - Detect
 - Track
 - Sample (0, 4, 8, 9)
Scanner runtime schedules computation graphs onto CPU/GPU clusters.
Approximating stateful processing to increase parallelism
Approximating stateful processing to increase parallelism
Approximating stateful processing to increase parallelism
Per-element dependency analysis

<table>
<thead>
<tr>
<th>id</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resize
impl: CUDA

Flow
S[0,1]
impl: OpenCV

Sample
0, 4, 8, 9
Per-element dependency analysis

<table>
<thead>
<tr>
<th>id</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resize
- impl: CUDA

Flow
- impl: OpenCV

Sample
- $S[0,1]$
- 0, 4, 8, 9
Per-element dependency analysis

<table>
<thead>
<tr>
<th>id</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resize
impl: CUDA

Flow
S[0,1]
impl: OpenCV

Sample
0, 4, 8, 9
Efficient access to sparse frames

Improves decode throughput by 2 - 14x for sparse access patterns
Using many machines for quick turnaround when running inference

Analyzing a 2 hour 1080p movie

1 K80 GPU: 55.3 mins
75 K80 GPUs: 123 secs

* Benchmark: running OpenPose on all frames
Scanner scales when processing large datasets

Throughput when processing large datasets

- **Linear scaling**
- **Benchmark:** running OpenPose on all frames

Throughput (relative to 20 GPUs)

- 657 Movies
- 70k TV Clips

* Benchmark: running OpenPose on all frames
Accelerating the 3D human pose reconstruction pipeline

Processing 1 minute from 480 cameras

1 Titan X GPU: 24 hours
Grad-student baseline
4 Titan X GPUs: 10.5 hours
Scanner implementation
4 Titan X GPUs: 3.9 hours
200 K80 GPUs: 37.5 mins
Scaling Surround360 video

Processing 1 minute of video:

Facebook’s Implementation
32-core CPU: 6.7 hours
Scanner Implementation
32-core CPU: 2.7 hours
8 32-core CPUs: 18 mins
Cloud vision services

- “Turnkey” service solutions:
 - User uploads video
 - Service returns annotations/labels
Today’s summary

- Increasing interest in cloud-scale infrastructure for processing large amounts of video at scale

- Today’s examples:
 - Processing many streetlight camera feeds
 - Ingest at Facebook
 - Batch processing with Scanner

- But don’t forget... algorithmic innovation is always a way to do more without scaling up system size.