Lecture 13:

Processing Video at
Cloud Scale

Visual Computing Systems
Stanford C5348K, Fall 2018

More on specialization to input video

Stanford (S348K, Fall 2018

Follow on from last time

m Recall idea of NoScope: train a cheap model that is specialized for
contents a specific video stream (model distillation)

m Alternative (more traditional) specialization strategy: choose among
set of pretained models to find cheapest (sufficiently accurate)
model for the job

- “Knobs” to configure:
- Input image resolution
- Inputimage frame rate
- DNN to use (Resnet101, Resnet50, Inception, MobileNet, etc.)
- Thresholds on frame-to-frame difference detectors, etc.

Stanford (S348K, Fall 2018

Simple example

Appropriate frame-rate sampling
depends on whether cars are
moving

TR N R 3 1 \ -
e 0.8 ww q) 08 | | :
S 1 g -
3 00 W\) 3 OO V\/v\»/\/\
L 04 1 T o4l _
02+ 1fps — 02+ 1f1ps _
30 fps ------ 30 fps ------
O | | | | O | | | | |
0 20 40 60 80 100 0O 10 20 30 40 50 60

Time (sec) Time (sec)

Stanford (S348K, Fall 2018

Challenge of distribution shift

If distribution of video stream is non-stationary, up-front
specialized cheap model looses accuracy as contents of video
change (specialized model needs to be periodically changed)

Avg GPU time per frame (sec)

10

' One-time u;ladate s

I Periodic update (Inference only) X
Periodic update (Profiling+Inference)

- .+ +-Hli,"‘+$'+‘.'|'.
+
++ +
+
+ T o+ +
+
¥ X
X
| | | | X* |

0.3 04 05 06 0.7 08 0.9
Frac. of frames with accurate result

1

Results from object detection
task on traffic camera video

Periodic update = every 4 seconds

Challenge: cost of profiling to
adaptively determine which
model to run eliminates
potential benefits of model
specialization

Stanford (S348K, Fall 2018

Reducing the cost of profiling

m (ost of profiling is running candidate models at points in
search space (profiling different values for all knobs)

B |dea 1: set of most-likely-to-be-good models changes slowly
over time

B |dea 2: similar streams have similar most-likely-to-be-good
candidate models

Stanford (S348K, Fall 2018

Employing idea 1

m Assume model updates every segment (e.g., 4 seconds)
m Profile all Cmodel configurations for time segment 1
- Retain top-K configurations
m Profile only top-K configurations in future segments
m Reset after window of N segments

Let S be number of segments before reset (~4)
Let K be size of candidate set (K << ()
profiling cost=C+ (N-1) x K<< C(x N Assumption: bad model

configurations tend to remain
bad for longer periods of time

Stanford (S348K, Fall 2018

Employing idea 2

® Assume many video cameras throughput a city
B (luster cameras by how similar their streams are

m Only one camera per cluster needs to perform full profiling to
identify top-K candidate set

- Other cameras just perform top-K profiling

Assumption: bad model
configurations tend to remain
bad for longer periods of time

Stanford (S348K, Fall 2018

Intelligent profiling makes adaptivity profitable

— | | | | | 1.2
& 1k One-time profiling . S Inference + Profliling Cost
L Chameleon L 4L Inference Cost _
(b D
s 08T i Sos | -
3 06) 0.6 | .
2 £
;’ 0.4 1 +: N) ; 0.4 |- T=1 segments |
o i o
(cD» 0.2 et . 30-2 - ;T=8 segments \ -
3: 0 1 ! ! l ! < 0 ! am.m am— *
0 0.2 0.4 0.6 0.8 1 0.65 0.7 0.75 0.8 0.85
Frac. of frames with accurate result Frac. of frames with accurate result
Across dataset of multiple streetlight cameras, ? ?

when keeping accuracy similar, 2-3X speedup
compared to profiling once
(really, once per 150 seconds)

But really the problem with profiling once is that accuracy
is highly variable (see accuracy variance of blue crosses)

Stanford (S348K, Fall 2018

Managing video ingest at Facebook

Stanford (S348K, Fall 2018

Big video data

‘-rwm*'gw

. e "'"w ‘:' il ‘
Y/ Z/M‘, . ?~5‘ ﬁ{ﬁ‘« b

3 > = - / L A
, i"h‘.. of ; 4 L - 0 i‘ “ ,\r ‘\ ‘.""” -

d i -’ : ¥ 8 ;‘;). |
- ' fl\
s .M -'ﬁvw‘r mmS s
\ y < . “d \
My " I [e B ;

Tory Hargo
ok at 2l of them. Amazing

. Sam Evans
These pre Wguins are so cutel |just want to
cuddle

Shlylp

n& Yo st be old!

) Zani que Albcrt
&

P) 035/412

- 'V’& ﬂ‘ o, 7 , PSY - GANGNAM STYLE (Z'&AEI) M/V

Youtube 2015: 300 hours
uploaded per minute [Youtube] FB Live Video

Facebook 2016:
100 million hours of video
watched per day

koo

S DIRTY WHNWE
h WUNEY FRST W 3’

| DOPE ’f R@TEN

Netflix

; |
kK
“ \yley. T Thwisbn Ha S (Cha
3,830 W ooy
o
EEGINNING OF THE ENE
: 5

LG Spring: DDQ 3. #Z - KCM va K2V
£.454 awres co LOK

Snapchat Video

Stanford (S348K, Fall 2018

Facebook Streaming Video Engine (SVE)

® Designed for non-streaming video upload applications (not Facebook Live)
- Facebook video posts
- FB Messenger video shares
- Instagram Stories
- 360 videos

B Goals/requirements:

- Low latency: minimize latency of start of upload to sharable state
- Particularly important for FB Messenger uploads

- Flexible (support variety of applications such as those listed above, with
different processing pipelines after upload)

- Robust to faults and overload

Stanford (S348K, Fall 2018

Basic video sharing pipeline

1. Record
Client 2. Video upload
- - 3
1
Client 6. Stream to viewer
2

Datacenter

3.Process | — | 4. Store

(validation,
reencoding,
video analysis,
thumbnail extract)

5. Share Event

Stanford (S348K, Fall 2018

Video upload and processing times *

File size of video

=— [min, IM) —
— [10, 30M)
— [300M, IG) —

[I,3M) — [3, IOM)
[30, IOOM) —[100, 300M)
[1G, max)

100 -

Percentile
U1
o
i

Ll L ll i | N |

1]

O M |
10! 100 10!

102 103

Upload time (sec)

10%

Percentile

N
o

100

107
Encode time (sec)

103 104

* Serialized times (SVE system will parallelize encoding across segments as discussed in a few slides)

Stanford (S348K, Fall 2018

Pipelining upload and processing

B (lient application partitions video into segments prior to upload
® (lient application optionally downsamples video (skipped if video recorded at low enough
resolution, internet connection is fast, or device does not support HW accelerated encode)
®m Upload and processing of video is pipelined (upload and processing is mostly parallelized)
B Processing itself can be parallelized across segments
. = upload

= store
= processing
Seg Seg Seg Seg Seg Seg

Stanford (S348K, Fall 2018

DAG representation of processing

]

Tracks Tasks
[HD Count
| Encoding Segments
C—=————"
|| Thumbnail |]
v | | Generation | |
Video Ry ¢ Count Combine
| SD_ | (Segments Tracks
Original < Encoding | 7
| Task Group | [Notiication |
. (SD) l
—_Audio ’\ Encoding Video
- N Classification
— Metadata M Analysis
Simple DAG:

Encodes HD and SD version of uploaded video

DAG node ="“task”

Each task is executed serially on one video segment
Overall DAG execution can be parallelized
(across tracks and segments)

Facebook Video Posts: ~153 tasks
Messenger shares: 18 tasks
Instagram stories: 22 tasks

DAG Specification in Python:

Nodes defined on audio, video, metadata tracks:
pipeline = create_pipeline(video)

video_track = pipeline.create_video_track()
1f video.should_encode_hd
hd_video = video_track.add(hd_encoding)
.add(count_segments)
sd_video = video_track.add(
{sd_encoding, thumbnail_generation},
) .add(count_segments)

audio_track = pipeline.create_audio_track()
sd_audio = audio_track.add(sd_encoding)

meta_track =
pipeline.create_metadata_track()
.add(analysis)

pipeline.sync_point(
{hd_video, sd_video, sd_audio},
combine_tracks,
).add(notify, 'latency_sensitive')
.add(video_classification)

Stanford (S348K, Fall 2018

Coarse-grained parallel video encoding

m Parallelized across segments (I-frame inserted at start of segment)
m (Concatenate independently encoded bitstreams

Task 1 Task 2 Task 3 Task 4

(encode 0-2 min) (encode 2-4 min) (encode 4-6 min) (encode 6-8 min)

Task 5

concat

Smaller segments = more potential parallelism, worse video compression
Latency-sensitive applications: 10 second segments
Non-latency sensitive, long videos: 2 minute segments (maximize compression)

Stanford (S348K, Fall 2018

Overload control

m When FB cannot keep up with the world’s video upload rate...
m Delay latency-insensitive tasks

m Rebalance load: redirect uploads to new datacenter region
m Delay processing of new uploads

Stanford (S348K, Fall 2018

Scanner: batch video analytics

Stanford (S348K, Fall 2018

Emerging “big” video applications

Synthesizing VR video Vehicular video analysis Drone 3D reconstruction

Markerless motion capture Computational video editing Auto checkout shopplng

X >Aﬁ_,’J:—‘

™" ! 23 -
I frui o - , H
| fruit _— 3 w

'."Ea:{Eh”up

Facebook Surround360 VR video

Input:
14 cameras, 2048 x 2048

300 GB / minute

220y wi

’\
\

Output:
8K Panoramic Video

paine |
glul iifl [

Facebook Surrgund360 VR video

§ D™
e
e i s % .
AN 0 TN
R 2 AP)

Cross-video
S
dependencies

44 Stages

Dependencies
over Time

Concat

}
-\

6.7 compute hours per min of
output video on a 32 core CPU

https://code.fb.com/video-engineering/surround-360-is-now-open-source/

Markerless human motion capture

-
.

= A v 6’\
o

—

24 compute hours / min of
video on a litan X

LE]]
-t i
. &

§ al 1
, | é
{ i
R ﬂ:‘..?v ",

[JoO 15]

Video analytics

Example: film content analytics

Locating action shots Actor co-occurrence

A b TP L

https://medium.com/netflix-techblog/ava-the-art-and-science-of-image-discovery-at-netflix-a442f163af6

Three common properties

Existing tools

Halide

Large video collections CUDA

‘Illllllllllllllllllllllll.

GL TF

EEREEEREEERERB.

Clusters of machines
CPUs
GPUs

4 B EEEEEEEEEENDN

4B EEEEEEEEEEEEEEEEEEEETR

.
O
Pa i
X4 I
\ £
4 | .
o ¥,
[Ete 7
[e !
(((. |
—
B

Scanner: a system for...

1. Productively developing big video data
applications

2. Efficiently executing these applications at scale

Axes of scalability

Data scalability Compute scalability

10s of concurrent

streams 4-GPU Desktop

| 100s of films
Single 100k Youtube 100s of
video video clips Laptop Machines

Scanner overview

Directory of videos Organize videos as tables

_ 2" lable: star wars table: mean. girls table: the_shining
mOVlES/ sta r_wa 'S . mp4 - frame_id frame_id| frame frame_id| frame
movies/mean_girls.mp4 — i
movies/pulp_fiction.mp4 -
Hovies/the_shining.mp4 E

.lllllllllllll’

’.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII’

Construct applications as data flow
Library of useful functions graphs

l impl- CUDA |mI P ’[OFC l
OpenPose
‘impl: OpenCV impl: C++ | impl: Caffe

Image Resize

- table
R

x-*D

imol' Halide

7
:
-

/

Y1]
J/
L"/
a2
< ¥

h

/

B Y

ime

' Y

— —
-

|
.
0 ’,;n\ s
y '(\
{ |
{ —
’ : "' anl -
v SLLINN AN 4

& =
’.
v
-
. o_—
Red

track player over t

- -

22!

- ‘ﬂ ..‘”'m.”
- -
T3l 2e338:

-
s 333
3

Simple example

"e

ot v

s '...
0

Vi

deo processing as a data flow graph

Read 30 FPS video

db = scanner.Database()
video_tables = db.ingest_videos(videos)

frame = db.sources.Column(video_tables[0])

Subsample to 10 FPS

* transformed = db.ops.Transform(

sparse_frames = db.streams.Stride(frame, 3)

) frame = sparse_frames,
_ _ Resize for DNN detector width = 496, height = 398,
impl: Halide device = GPU)
v detections = db.ops.Detect(
- frame = transformed,
: : Detect person using DNN model = ‘face_dnn.prototxt’,
impl: Pytorch batch = 8
device = GPU)
. - . frame _detections = db.streams.Space(detections, 3)
$ Align with 30 FPS video - °

v

faces = db.ops.Track(

frame = frame,
detections = frame_detections,
warmup = 20,

Track at 30 FPS device = CPU)

output = db.sinks.Column(faces)

id | objects Save tracked boxes

Mapping over streams

o Edllido Llldo
oo EgillRdco e llligco
N-[]-N- -
 ElllRdo Lllldo
2-[8- @
~ S~ e~
D+[@- @
o I o
2-[1-3-]-=
© Edillido Lldo

Sampling streams

o D[@+ A 2
m ®
nrv N~
= 5@ -@-[-@
O
£ 5
Q.
e @-[l-@-[}a-(-a
C =
7p
—
o Hldo Ellgo Elldc

(20 I

>)
"=

n

Sampling streams

@1 nl

-)
"=

)

D+ [J-@-[@[3~ Pa
3 3
S ~
g+ >N+ N+ N+ P&
o o
< <
g+ - ~E- Ee
o o
— —
2+ PI-[-T~[B

Stateful processing

> @ PR Ee & 8
= E+ﬂ_+ﬂ
~ ~ Ellleg~
E+D+E+D+E+D+E+D+E+D+E
Lo w Sl o
< E.vD.vH
2--@-C-@3--3-(ra--a
E A

.

Scanner data flow operators

Stencil Strided Sampling Strided Spacing

Map (with batch)

!
'
6

|
'

|
v

0]
'
v
0]

o
2o -3
\

ge @
\

N[
e
8 -a

A5
b
vy
5]

!
v

M— M

v
mpie
v

Bounded State

Sparse Strided Stencil

Dense Strided Stencil

—> 53—

Scanner runtime schedules computation

graphs onto CPU/GPU clusters

Machine 0: multi-core CPU + 1 GPU

I/0

I/0

I/O

I/0

I/0

I/0

id | objects
-

me

Approximating stateful processing

to iIncrease parallelism

> || [=] || [= | = |» >

g impl: C++
i objects

me

Approximating stateful processing

to iIncrease parallelism

=- PE
Y
- &)
Y
> £
Y
>
A
E.v
S-[-N
o Jlllidc

> | || [[

me

Approximating stateful processing

to iIncrease parallelism

Per-element dependency analysis

H—»
S-(-B0)-8

Per-element dependency analysis

- >
S-(-BC)a

Per-element dependency analysis

- >

S

> _ulv

v
. I

5.1, IO

Efficient access to sparse frames

frame 0 frame 2 frame 5 frame 7 frame 10
(keyframe) (keyframe) (keyframe) (keyframe) (keyframe) (end)
ol T——
byte 0 byte 4840 byte 6796 byte bytei

11284 : : 12480

ol B O

Improves decode throughput by 2 - 14x for sparse access patterns

Using many machines for quick
turnaround when running inference

Analyzing a 2 hour 1080p movie

1 K80 GPU: 55.3 mins

75 K80 GPUs: 123 secs

* Benchmark: running OpenPose on all frames

Scanner scales when processing
large datasets

Throughput when processing large datasets

,J 23 Linear scalin — 657 Movies
5 9= 70k TV Clips
al
*g_CD
%8 7.5
38
£Q 9
3 2.5
i [i
20 100 200
GPUs

* Benchmark: running OpenPose on all frames

Accelerating the 3D human pose
reconstruction pipeline

Processing 1 minute from 480 cameras

1 Titan X GPU: 24 hours

Grad-student baseline
4 Titan X GPUs: 10.5 hours

Scanner implementation
| 4 Titan X GPUs: 3.9 hours

200 K80 GPUs: 37.5 mins

Scaling Surround360 video

Processing 1 minute of video:

Facebook’s Implementation

32-core CPU: 6.7 hours

\ \
m! m m Warp
\]

] N 4
@@@)
X v ¥ v NS

Y

N

Scanner Implementation

v
32-core CPU: 2.7 hours

8 32-core CPUs: 18 mins

Cloud vision services

> Google Cloud Why Google Products Solutions Pricing Security

B “Turnkey” service solutions:
- User uploads Video Al & Machine Learning Products
- Service returns annotations/labels

Cloud Vision

Derive insight from your images with our powerful pretrained APl models

GO TO CONSOLE

View pricing or documentation for this product.

dWS

\-/‘7

Products Solutions Pricing Learn Partner Network AWS Marketplace Explore More

Amazon Rekognition Overview Features ¥ Pricing Getting Started Resources

Amazon Rekognition

Easily add intelligent image and video analysis to your applications.

Get Started with Amazon
Rekognition

Stanford (S348K, Fall 2018

Today’s summary

B [ncreasing interest in cloud-scale infrastructure for processing
large amounts of video at scale

m Today’s examples:
- Processing many streetlight camera feeds
- Ingest at Facebook
- Batch processing with Scanner

m Butdon't forget... algorithmicinnovation is always a way to do
more without scaling up system size.

Stanford (S348K, Fall 2018

