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More on specialization to input video

Stanford (S348K, Fall 2018



Follow on from last time

m Recall idea of NoScope: train a cheap model that is specialized for
contents a specific video stream (model distillation)

m  Alternative (more traditional) specialization strategy: choose among
set of pretained models to find cheapest (sufficiently accurate)
model for the job

- “Knobs” to configure:
- Input image resolution
- Inputimage frame rate
- DNN to use (Resnet101, Resnet50, Inception, MobileNet, etc.)
- Thresholds on frame-to-frame difference detectors, etc.
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Simple example

Appropriate frame-rate sampling
depends on whether cars are
moving
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Challenge of distribution shift

If distribution of video stream is non-stationary, up-front
specialized cheap model looses accuracy as contents of video
change (specialized model needs to be periodically changed)

Avg GPU time per frame (sec)
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Results from object detection
task on traffic camera video

Periodic update = every 4 seconds

Challenge: cost of profiling to
adaptively determine which
model to run eliminates
potential benefits of model
specialization
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Reducing the cost of profiling

m (ost of profiling is running candidate models at points in
search space (profiling different values for all knobs)

B |dea 1: set of most-likely-to-be-good models changes slowly
over time

B |dea 2: similar streams have similar most-likely-to-be-good
candidate models
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Employing idea 1

m Assume model updates every segment (e.g., 4 seconds)
m Profile all Cmodel configurations for time segment 1
- Retain top-K configurations
m Profile only top-K configurations in future segments
m Reset after window of N segments

Let S be number of segments before reset (~4)
Let K be size of candidate set (K << ()
profiling cost=C+ (N-1) x K<< C(x N Assumption: bad model

configurations tend to remain
bad for longer periods of time
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Employing idea 2

® Assume many video cameras throughput a city
B (luster cameras by how similar their streams are

m Only one camera per cluster needs to perform full profiling to
identify top-K candidate set

- Other cameras just perform top-K profiling

Assumption: bad model
configurations tend to remain
bad for longer periods of time
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Intelligent profiling makes adaptivity profitable
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Across dataset of multiple streetlight cameras, ? ?

when keeping accuracy similar, 2-3X speedup
compared to profiling once
(really, once per 150 seconds)

But really the problem with profiling once is that accuracy
is highly variable (see accuracy variance of blue crosses)
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Managing video ingest at Facebook
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Big video data
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Facebook Streaming Video Engine (SVE)

®  Designed for non-streaming video upload applications (not Facebook Live)
- Facebook video posts
- FB Messenger video shares
- Instagram Stories
- 360 videos

B Goals/requirements:

- Low latency: minimize latency of start of upload to sharable state
- Particularly important for FB Messenger uploads

- Flexible (support variety of applications such as those listed above, with
different processing pipelines after upload)

- Robust to faults and overload
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Basic video sharing pipeline

1. Record
Client 2. Video upload
- - 3
1
Client 6. Stream to viewer
2

Datacenter

3.Process | — | 4. Store

(validation,
reencoding,
video analysis,
thumbnail extract)

5. Share Event
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Video upload and processing times *

File size of video
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* Serialized times (SVE system will parallelize encoding across segments as discussed in a few slides)
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Pipelining upload and processing

B (lient application partitions video into segments prior to upload
®  (lient application optionally downsamples video (skipped if video recorded at low enough
resolution, internet connection is fast, or device does not support HW accelerated encode)
®m  Upload and processing of video is pipelined (upload and processing is mostly parallelized)
B Processing itself can be parallelized across segments
. = upload

= store
= processing
Seg Seg Seg Seg Seg Seg

Stanford (S348K, Fall 2018



DAG representation of processing

]

Tracks Tasks
[ HD Count
| Encoding Segments
C—=————"
|| Thumbnail |]
v | | Generation | |
Video Ry ¢ Count Combine
| SD_ | (Segments Tracks
Original < Encoding | 7
| Task Group | [ Notiication |
. ( SD ) l
—_Audio ’\ Encoding Video
- N Classification
— Metadata M Analysis
Simple DAG:

Encodes HD and SD version of uploaded video

DAG node ="“task”

Each task is executed serially on one video segment
Overall DAG execution can be parallelized
(across tracks and segments)

Facebook Video Posts: ~153 tasks
Messenger shares: 18 tasks
Instagram stories: 22 tasks

DAG Specification in Python:

Nodes defined on audio, video, metadata tracks:
pipeline = create_pipeline(video)

video_track = pipeline.create_video_track()
1f video.should_encode_hd
hd_video = video_track.add(hd_encoding)
.add(count_segments)
sd_video = video_track.add(
{sd_encoding, thumbnail_generation},
) .add(count_segments)

audio_track = pipeline.create_audio_track()
sd_audio = audio_track.add(sd_encoding)

meta_track =
pipeline.create_metadata_track()
.add(analysis)

pipeline.sync_point(
{hd_video, sd_video, sd_audio},
combine_tracks,
).add(notify, 'latency_sensitive')
.add(video_classification)
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Coarse-grained parallel video encoding

m Parallelized across segments (I-frame inserted at start of segment)
m (Concatenate independently encoded bitstreams

Task 1 Task 2 Task 3 Task 4

(encode 0-2 min) (encode 2-4 min) (encode 4-6 min) (encode 6-8 min)

Task 5

concat

Smaller segments = more potential parallelism, worse video compression
Latency-sensitive applications: 10 second segments
Non-latency sensitive, long videos: 2 minute segments (maximize compression)
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Overload control

m When FB cannot keep up with the world’s video upload rate...
m Delay latency-insensitive tasks

m Rebalance load: redirect uploads to new datacenter region
m Delay processing of new uploads
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Scanner: batch video analytics
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Emerging “big” video applications

Synthesizing VR video Vehicular video analysis Drone 3D reconstruction

Markerless motion capture Computational video editing Auto checkout shopplng

X >Aﬁ_,’J:—‘

™" ! 23 -
I frui o - , H
| fruit _— 3 w

'."Ea:{Eh”up




Facebook Surround360 VR video

Input:
14 cameras, 2048 x 2048

300 GB / minute

220y wi
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Output:
8K Panoramic Video
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Facebook Surrgund360 VR video
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https://code.fb.com/video-engineering/surround-360-is-now-open-source/



Markerless human motion capture
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Video analytics

Example: film content analytics

Locating action shots Actor co-occurrence

A b TP L

https://medium.com/netflix-techblog/ava-the-art-and-science-of-image-discovery-at-netflix-a442f163af6



Three common properties

Existing tools

Halide

Large video collections CUDA
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Scanner: a system for...

1. Productively developing big video data
applications

2. Efficiently executing these applications at scale



Axes of scalability

Data scalability Compute scalability

10s of concurrent

streams 4-GPU Desktop

| 100s of films
Single 100k Youtube 100s of
video video clips Laptop Machines




Scanner overview

Directory of videos Organize videos as tables

_ 2" lable: star wars table: mean. girls table: the_shining
mOVlES/ sta r_wa 'S . mp4 - frame_id frame_id| frame frame_id| frame
movies/mean_girls.mp4 — i
movies/pulp_fiction.mp4 -
Hovies/the_shining.mp4 E
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Construct applications as data flow
Library of useful functions graphs

l impl- CUDA |mI P ’[OFC l
OpenPose
‘impl: OpenCV impl: C++ | impl: Caffe

Image Resize

- table
R
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Vi

deo processing as a data flow graph

Read 30 FPS video

db = scanner.Database()
video_tables = db.ingest_videos(videos)

frame = db.sources.Column(video_tables[0])

Subsample to 10 FPS

* transformed = db.ops.Transform(

sparse_frames = db.streams.Stride(frame, 3)

) frame = sparse_frames,
_ _ Resize for DNN detector width = 496, height = 398,
impl: Halide device = GPU)
v detections = db.ops.Detect(
- frame = transformed,
: : Detect person using DNN model = ‘face_dnn.prototxt’,
impl: Pytorch batch = 8
device = GPU)
. - . frame _detections = db.streams.Space(detections, 3)
$ Align with 30 FPS video - °

v

faces = db.ops.Track(

frame = frame,
detections = frame_detections,
warmup = 20,

Track at 30 FPS device = CPU)

output = db.sinks.Column(faces)

id | objects Save tracked boxes




Mapping over streams
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Sampling streams
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Sampling streams
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Stateful processing
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Scanner data flow operators

Stencil Strided Sampling Strided Spacing

Map (with batch)
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Scanner runtime schedules computation

graphs onto CPU/GPU clusters

Machine 0: multi-core CPU + 1 GPU

I/0
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me

Approximating stateful processing

to iIncrease parallelism
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me

Approximating stateful processing

to iIncrease parallelism
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Per-element dependency analysis
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Per-element dependency analysis
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Per-element dependency analysis
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Efficient access to sparse frames

frame 0 frame 2 frame 5 frame 7 frame 10
(keyframe) (keyframe) (keyframe) (keyframe) (keyframe) (end)
ol T——
byte 0 byte 4840 byte 6796 byte bytei

11284 : : 12480

ol B O

Improves decode throughput by 2 - 14x for sparse access patterns



Using many machines for quick
turnaround when running inference

Analyzing a 2 hour 1080p movie

1 K80 GPU: 55.3 mins

75 K80 GPUs: 123 secs

* Benchmark: running OpenPose on all frames



Scanner scales when processing
large datasets

Throughput when processing large datasets

,J 23 Linear scalin — 657 Movies
5 9= 70k TV Clips
al
*g_CD
%8 7.5
38
£Q 9
3 2.5
i [ i
20 100 200
GPUs

* Benchmark: running OpenPose on all frames



Accelerating the 3D human pose
reconstruction pipeline

Processing 1 minute from 480 cameras

1 Titan X GPU: 24 hours

Grad-student baseline
4 Titan X GPUs: 10.5 hours

Scanner implementation
| 4 Titan X GPUs: 3.9 hours

200 K80 GPUs: 37.5 mins



Scaling Surround360 video

Processing 1 minute of video:

Facebook’s Implementation

32-core CPU: 6.7 hours
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Scanner Implementation

v
32-core CPU: 2.7 hours

8 32-core CPUs: 18 mins



Cloud vision services

> Google Cloud Why Google Products Solutions Pricing Security

B “Turnkey” service solutions:
- User uploads Video Al & Machine Learning Products
- Service returns annotations/labels

Cloud Vision

Derive insight from your images with our powerful pretrained APl models

GO TO CONSOLE

View pricing or documentation for this product.

dWS

\-/‘7

Products Solutions Pricing Learn Partner Network AWS Marketplace Explore More

Amazon Rekognition Overview  Features ¥  Pricing  Getting Started Resources

Amazon Rekognition

Easily add intelligent image and video analysis to your applications.

Get Started with Amazon
Rekognition
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Today’s summary

B [ncreasing interest in cloud-scale infrastructure for processing
large amounts of video at scale

m Today’s examples:
- Processing many streetlight camera feeds
- Ingest at Facebook
- Batch processing with Scanner

m Butdon't forget... algorithmicinnovation is always a way to do
more without scaling up system size.
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