Lecture 13: Processing Video at **Cloud Scale**

Visual Computing Systems Stanford CS348K, Fall 2018

More on specialization to input video

Follow on from last time

- **Recall idea of NoScope: train a cheap model that is specialized for** contents a specific video stream (model distillation)
- Alternative (more traditional) specialization strategy: choose among set of pretained models to find cheapest (sufficiently accurate) model for the job
 - "Knobs" to configure:
 - Input image resolution
 - Input image frame rate
 - DNN to use (Resnet101, Resnet50, Inception, MobileNet, etc.)
 - Thresholds on frame-to-frame difference detectors, etc.

Simple example

Appropriate frame-rate sampling depends on whether cars are moving

Challenge of distribution shift

If distribution of video stream is non-stationary, up-front specialized cheap model looses accuracy as contents of video change (specialized model needs to be periodically changed)

Results from object detection task on traffic camera video

Periodic update = every 4 seconds

Challenge: cost of profiling to adaptively determine which model to run eliminates potential benefits of model specialization

Reducing the cost of profiling

- Cost of profiling is running candidate models at points in search space (profiling different values for all knobs)
- Idea 1: set of most-likely-to-be-good models changes slowly over time
- Idea 2: similar streams have similar most-likely-to-be-good candidate models

Employing idea 1

- Assume model updates every segment (e.g., 4 seconds)
- Profile all C model configurations for time segment 1
 - Retain top-K configurations
- **Profile only top-K configurations in future segments**
- **Reset after window of N segments**

Let S be number of segments before reset (~4) Let K be size of candidate set (K << C) profiling cost = $C + (N-1) \times K << C \times N$

Assumption: bad model configurations tend to remain bad for longer periods of time

Employing idea 2

- Assume many video cameras throughput a city
- **Cluster cameras by how similar their streams are**
- Only one camera per cluster needs to perform full profiling to identify top-K candidate set
 - Other cameras just perform top-K profiling

Assumption: bad model configurations tend to remain bad for longer periods of time

Intelligent profiling makes adaptivity profitable

Across dataset of multiple streetlight cameras, when keeping accuracy similar, 2-3X speedup compared to profiling once (really, once per 150 seconds)

But really the problem with profiling once is that accuracy is highly variable (see accuracy variance of blue crosses)

??

Managing video ingest at Facebook

Big video data

Facebook 2016: 100 million hours of video watched per day

Snapchat Video

PSY - GANGNAM STYLE (강남스타일) M/V

Youtube 2015: 300 hours uploaded per minute [Youtube]

Twitch

FB Live Video

Netflix

Facebook Streaming Video Engine (SVE)

Designed for non-streaming video upload applications (not Facebook Live)

- Facebook video posts
- FB Messenger video shares
- Instagram Stories
- 360 videos
- **Goals/requirements:**
 - Low latency: *minimize latency* of start of upload to sharable state
 - Particularly important for FB Messenger uploads
 - Flexible (support variety of applications such as those listed above, with different processing pipelines after upload)
 - Robust to faults and overload

ad to sharable state ploads as those listed above, with

Basic video sharing pipeline

Video upload and processing times *

* Serialized times (SVE system will parallelize encoding across segments as discussed in a few slides)

Pipelining upload and processing

- **Client application partitions video into segments prior to upload**
- Client application optionally downsamples video (skipped if video recorded at low enough resolution, internet connection is fast, or device does not support HW accelerated encode)
- Upload and processing of video is pipelined (upload and processing is mostly parallelized)
- **Processing itself can be parallelized across segments**

DAG representation of processing

DAG node = "task" Each task is executed serially on one video segment **Overall DAG execution can be parallelized** (across tracks and segments) Facebook Video Posts: ~153 tasks

Messenger shares: 18 tasks Instagram stories: 22 tasks

```
video_track = pipeline.create_video_track()
if video.should_encode_hd
 hd_video = video_track.add(hd_encoding)
   .add(count_segments)
sd_video = video_track.add(
  {sd_encoding, thumbnail_generation},
 ).add(count_segments)
audio_track = pipeline.create_audio_track()
sd_audio = audio_track.add(sd_encoding)
meta_track =
  pipeline.create_metadata_track()
  .add(analysis)
pipeline.sync_point(
  {hd_video, sd_video, sd_audio},
  combine_tracks,
 ).add(notify, 'latency_sensitive')
  .add(video_classification)
```

DAG Specification in Python:

Nodes defined on audio, video, metadata tracks:

pipeline = create_pipeline(video)

Coarse-grained parallel video encoding Parallelized across segments (I-frame inserted at start of segment)

Concatenate independently encoded bitstreams

Smaller segments = more potential parallelism, worse video compression Latency-sensitive applications: 10 second segments Non-latency sensitive, long videos: 2 minute segments (maximize compression)

Overload control

- When FB cannot keep up with the world's video upload rate...
- **Delay latency-insensitive tasks**
- **Rebalance load: redirect uploads to new datacenter region**
- **Delay processing of new uploads**

Scanner: batch video analytics

Emerging "big" video applications

Synthesizing VR video

Vehicular video analysis

Markerless motion capture

Computational video editing

Drone 3D reconstruction

Auto-checkout shopping

Facebook Surround360 VR video

Input: 14 cameras, 2048 x 2048 300 GB / minute

https://code.fb.com/video-engineering/surround-360-is-now-open-source/

Markerless human motion capture

f: 33

body

f: 31

f: 32

body32

[Joo 15]

body34

Locating action shots

https://medium.com/netflix-techblog/ava-the-art-and-science-of-image-discovery-at-netflix-a442f163af6

Actor co-occurrence

Three common properties

Large video collections

Existing tools

Clusters of machines

Scanner: a system for...

1. Productively developing big video data applications

2. Efficiently executing these applications at scale

Axes of scalability

Data scalability

10s of concurrent streams

100s of films 100k Youtube video clips

Single video

Laptop

Compute scalability

4-GPU Desktop

100s of Machines

Scanner overview

Directory of videos

movies/star_wars.mp4 movies/mean_girls.mp4 movies/pulp_fiction.mp4

movies/the_shining.mp4

Library of useful functions

graphs

Organize videos as tables table: mean_girls table: the_shining frame_id frame frame id frame

Construct applications as data flow

Simple example: track player over time

Read 30 FPS video

Subsample to 10 FPS

Resize for DNN detector

Detect person using DNN

Align with 30 FPS video

Track at 30 FPS

Save tracked boxes

db = scanner.Database()

device = GPU)

batch = 8, device = GPU)

frame warmup device

```
video_tables = db.ingest_videos(videos)
frame = db.sources.Column(video_tables[0])
sparse_frames = db.streams.Stride(frame, 3)
transformed = db.ops.Transform(
    frame = sparse_frames,
    width = 496, height = 398,
detections = db.ops.Detect(
    frame = transformed,
    model = 'face_dnn.prototxt',
frame_detections = db.streams.Space(detections, 3)
faces = db.ops.Track(
               = frame,
    detections = frame_detections,
               = 20,
               = CPU)
output = db.sinks.Column(faces)
```

Mapping over streams

5 6 8 9 7 \mathbf{I} ↓ ╉ ↓ ┢ ↓ 5 6 8 9 7 ┢ ╉ ┢ 6 7 8 5 9

Sampling streams

Sampling streams

Stateful processing

Additional operations

Scanner data flow operators

Scanner runtime schedules computation graphs onto CPU/GPU clusters

Machine 0: multi-core CPU + 1 GPU

Approximating stateful processing to increase parallelism

Approximating stateful processing to increase parallelism

Approximating stateful processing to increase parallelism

Per-element dependency analysis

Per-element dependency analysis

Per-element dependency analysis

Efficient access to sparse frames

Improves decode throughput by 2 - 14x for sparse access patterns

Using many machines for quick turnaround when running inference

Analyzing a 2 1 K80 GPU:

* Benchmark: running OpenPose on all frames

Analyzing a 2 hour 1080p movie

⊃U: **55.3 mins**

75 K80 GPUs:

123 secs

Scanner scales when processing large datasets

Throughput when processing large datasets

* Benchmark: running OpenPose on all frames

657 Movies **70k TV Clips**

Accelerating the 3D human pose reconstruction pipeline

Processing 1 minute from 480 cameras 1 Titan X GPU: 24 hours Grad-student baseline 4 Titan X GPUs: 10.5 hours Scanner implementation 4 Titan X GPUs: 3.9 hours 200 K80 GPUs: **37.5 mins**

Scaling Surround360 video

Processing 1 minute of video:

- Facebook's Implementation
 - 32-core CPU: **6.7 hours**
- Scanner Implementation
 - 32-core CPU: **2.7 hours**
 - 8 32-core CPUs: **18 mins**

Cloud vision services

- "Turnkey" service solutions:
 - User uploads video
 - Service returns annotations/labels

AI & Machine Lear

GO TO CO

View pricing or documentation for this product.

Why	Google	Products	Solutions	Pricing	Security
ning Pro	ducts				
ision from your images with our powerful pretrained API models					
NSOLE					

Today's summary

- Increasing interest in cloud-scale infrastructure for processing large amounts of video at scale
- **Today's examples:**
 - Processing many streetlight camera feeds
 - Ingest at Facebook
 - Batch processing with Scanner
- But don't forget... algorithmic innovation is always a way to do more without scaling up system size.