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Thought experiment
Imagine we wanted to detect people/cars/bikes in a video stream
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Object detection performance
600x600 input images (not particularly large)

[Credit: Tensorflow detection model zoo]
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Aside: 
optimizing object detection in a 

single image
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VGG-16 image classification network

Network assigns input image one of 1000 potential labels.

Output: 
probability of label 

(for 1000 class labels) 

Input: 
fixed size image

[Simonyan 2015]
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Using classification network as a “subroutine 
for object detection

for all region top-left positions (x,y): 
   for all region sizes (w,h): 
      cropped = image_crop(image, bbox(x,y,w,h)) 
      resized = image_resize(227,227) 
      label = detect_object(resized)  
      if (label != background) 
         // region defined by bbox(x,y,w,h) contains object 
         // of class ‘label’

Search over all regions of the image and all region sizes for objects  
(“Sliding window” over image, repeated for multiple potential object scales)

[Girshick 2014]
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Optimization 1: filter detection work via object proposals

Figure 2: Two examples of our selective search showing the necessity of different scales. On the left we find many objects at different
scales. On the right we necessarily find the objects at different scales as the girl is contained by the tv.

whose power of discovering parts or objects is left unevaluated. In
this work, we use multiple complementary strategies to deal with
as many image conditions as possible. We include the locations
generated using [3] in our evaluation.

2.3 Other Sampling Strategies

Alexe et al. [2] address the problem of the large sampling space
of an exhaustive search by proposing to search for any object, in-
dependent of its class. In their method they train a classifier on the
object windows of those objects which have a well-defined shape
(as opposed to stuff like “grass” and “sand”). Then instead of a full
exhaustive search they randomly sample boxes to which they apply
their classifier. The boxes with the highest “objectness” measure
serve as a set of object hypotheses. This set is then used to greatly
reduce the number of windows evaluated by class-specific object
detectors. We compare our method with their work.

Another strategy is to use visual words of the Bag-of-Words
model to predict the object location. Vedaldi et al. [34] use jumping
windows [5], in which the relation between individual visual words
and the object location is learned to predict the object location in
new images. Maji and Malik [23] combine multiple of these rela-
tions to predict the object location using a Hough-transform, after
which they randomly sample windows close to the Hough maxi-
mum. In contrast to learning, we use the image structure to sample
a set of class-independent object hypotheses.

To summarize, our novelty is as follows. Instead of an exhaus-
tive search [8, 12, 16, 36] we use segmentation as selective search
yielding a small set of class independent object locations. In con-
trast to the segmentation of [4, 9], instead of focusing on the best
segmentation algorithm [3], we use a variety of strategies to deal
with as many image conditions as possible, thereby severely reduc-
ing computational costs while potentially capturing more objects
accurately. Instead of learning an objectness measure on randomly
sampled boxes [2], we use a bottom-up grouping procedure to gen-
erate good object locations.

3 Selective Search

In this section we detail our selective search algorithm for object
recognition and present a variety of diversification strategies to deal
with as many image conditions as possible. A selective search al-
gorithm is subject to the following design considerations:

Capture All Scales. Objects can occur at any scale within the im-
age. Furthermore, some objects have less clear boundaries
then other objects. Therefore, in selective search all object
scales have to be taken into account, as illustrated in Figure
2. This is most naturally achieved by using an hierarchical
algorithm.

Diversification. There is no single optimal strategy to group re-
gions together. As observed earlier in Figure 1, regions may
form an object because of only colour, only texture, or because
parts are enclosed. Furthermore, lighting conditions such as
shading and the colour of the light may influence how regions
form an object. Therefore instead of a single strategy which
works well in most cases, we want to have a diverse set of
strategies to deal with all cases.

Fast to Compute. The goal of selective search is to yield a set of
possible object locations for use in a practical object recogni-
tion framework. The creation of this set should not become a
computational bottleneck, hence our algorithm should be rea-
sonably fast.

3.1 Selective Search by Hierarchical Grouping

We take a hierarchical grouping algorithm to form the basis of our
selective search. Bottom-up grouping is a popular approach to seg-
mentation [6, 13], hence we adapt it for selective search. Because
the process of grouping itself is hierarchical, we can naturally gen-
erate locations at all scales by continuing the grouping process until
the whole image becomes a single region. This satisfies the condi-
tion of capturing all scales.

As regions can yield richer information than pixels, we want to
use region-based features whenever possible. To get a set of small
starting regions which ideally do not span multiple objects, we use

3

Input: image 
Output: list of regions (various scales) that are likely to contain objects 
Idea: proposal algorithm filters parts of the image not likely to contain objects

Selective search [Uijlings IJCV 2013]
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Input image: 
(of any size)

Object 
Proposal 

generator
Crop/

Resample
Classification 

DNN

List of proposed 
regions (~2000) Pixel region 

(of canonical size)

object 
label

Object detection pipeline executed only on 
proposed regions

for each proposed region

[Girshick 2014]
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Object detection performance on Pascal VOC
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Example training data

VOC 2010 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
DPM v5 [18]† 49.2 53.8 13.1 15.3 35.5 53.4 49.7 27.0 17.2 28.8 14.7 17.8 46.4 51.2 47.7 10.8 34.2 20.7 43.8 38.3 33.4
UVA [34] 56.2 42.4 15.3 12.6 21.8 49.3 36.8 46.1 12.9 32.1 30.0 36.5 43.5 52.9 32.9 15.3 41.1 31.8 47.0 44.8 35.1
Regionlets [36] 65.0 48.9 25.9 24.6 24.5 56.1 54.5 51.2 17.0 28.9 30.2 35.8 40.2 55.7 43.5 14.3 43.9 32.6 54.0 45.9 39.7
SegDPM [16]† 61.4 53.4 25.6 25.2 35.5 51.7 50.6 50.8 19.3 33.8 26.8 40.4 48.3 54.4 47.1 14.8 38.7 35.0 52.8 43.1 40.4
R-CNN 67.1 64.1 46.7 32.0 30.5 56.4 57.2 65.9 27.0 47.3 40.9 66.6 57.8 65.9 53.6 26.7 56.5 38.1 52.8 50.2 50.2
R-CNN BB 71.8 65.8 53.0 36.8 35.9 59.7 60.0 69.9 27.9 50.6 41.4 70.0 62.0 69.0 58.1 29.5 59.4 39.3 61.2 52.4 53.7

Table 1: Detection average precision (%) on VOC 2010 test. R-CNN is most directly comparable to UVA and Regionlets since all
methods use selective search region proposals. Bounding box regression (BB) is described in Section 3.4. At publication time, SegDPM
was the top-performer on the PASCAL VOC leaderboard. †DPM and SegDPM use context rescoring not used by the other methods.

was selected by a grid search over {0, 0.1, . . . , 0.5} on a
validation set. We found that selecting this threshold care-
fully is important. Setting it to 0.5, as in [34], decreased
mAP by 5 points. Similarly, setting it to 0 decreased mAP
by 4 points. Positive examples are defined simply to be the
ground-truth bounding boxes for each class.

Once features are extracted and training labels are ap-
plied, we optimize one linear SVM per class. Since the
training data is too large to fit in memory, we adopt the
standard hard negative mining method [15, 32]. Hard neg-
ative mining converges quickly and in practice mAP stops
increasing after only a single pass over all images.

In supplementary material we discuss why the positive
and negative examples are defined differently in fine-tuning
versus SVM training. We also discuss why it’s necessary
to train detection classifiers rather than simply use outputs
from the final layer (fc8) of the fine-tuned CNN.

2.4. Results on PASCAL VOC 2010-12

Following the PASCAL VOC best practices [13], we
validated all design decisions and hyperparameters on the
VOC 2007 dataset (Section 3.2). For final results on the
VOC 2010-12 datasets, we fine-tuned the CNN on VOC
2012 train and optimized our detection SVMs on VOC 2012
trainval. We submitted test results to the evaluation server
only once for each of the two major algorithm variants (with
and without bounding box regression).

Table 1 shows complete results on VOC 2010. We com-
pare our method against four strong baselines, including
SegDPM [16], which combines DPM detectors with the
output of a semantic segmentation system [4] and uses ad-
ditional inter-detector context and image-classifier rescor-
ing. The most germane comparison is to the UVA system
from Uijlings et al. [34], since our systems use the same re-
gion proposal algorithm. To classify regions, their method
builds a four-level spatial pyramid and populates it with
densely sampled SIFT, Extended OpponentSIFT, and RGB-
SIFT descriptors, each vector quantized with 4000-word
codebooks. Classification is performed with a histogram
intersection kernel SVM. Compared to their multi-feature,
non-linear kernel SVM approach, we achieve a large im-
provement in mAP, from 35.1% to 53.7% mAP, while also

being much faster (Section 2.2). Our method achieves sim-
ilar performance (53.3% mAP) on VOC 2011/12 test.

3. Visualization, ablation, and modes of error

3.1. Visualizing learned features

First-layer filters can be visualized directly and are easy
to understand [23]. They capture oriented edges and oppo-
nent colors. Understanding the subsequent layers is more
challenging. Zeiler and Fergus present a visually attrac-
tive deconvolutional approach in [37]. We propose a simple
(and complementary) non-parametric method that directly
shows what the network learned.

The idea is to single out a particular unit (feature) in the
network and use it as if it were an object detector in its own
right. That is, we compute the unit’s activations on a large
set of held-out region proposals (about 10 million), sort the
proposals from highest to lowest activation, perform non-
maximum suppression, and then display the top-scoring re-
gions. Our method lets the selected unit “speak for itself”
by showing exactly which inputs it fires on. We avoid aver-
aging in order to see different visual modes and gain insight
into the invariances computed by the unit.

We visualize units from layer pool5, which is the max-
pooled output of the network’s fifth and final convolutional
layer. The pool5 feature map is 6 ⇥ 6 ⇥ 256 = 9216-
dimensional. Ignoring boundary effects, each pool5 unit has
a receptive field of 195⇥195 pixels in the original 227⇥227
pixel input. A central pool5 unit has a nearly global view,
while one near the edge has a smaller, clipped support.

Each row in Figure 3 displays the top 16 activations for
a pool5 unit from a CNN that we fine-tuned on VOC 2007
trainval. Six of the 256 functionally unique units are visu-
alized (the supplementary material includes more). These
units were selected to show a representative sample of what
the network learns. In the second row, we see a unit that
fires on dog faces and dot arrays. The unit corresponding to
the third row is a red blob detector. There are also detectors
for human faces and more abstract patterns such as text and
triangular structures with windows. The network appears
to learn a representation that combines a small number of
class-tuned features together with a distributed representa-

DNN weights “pre-trained” using object classification on ImageNet (lots of data, different task) 
DNN weights “fine-tuned” for the 20 VOC categories + 1 “background” category (task-specific data) 



 Stanford CS348K, Fall 2018

Optimization 2: region of interest pooling
RGB input image: 

(of any size)

convlayer/
maxpool

… ROI pool

“Fully convolutional network”: 
sequence of convolutions and pooling steps: output size is dependent on input size

7x7xC

HxWxC

ROI poolIdea: the output of early convolutional layers of 
network on downsampled input region is 
approximated by resampling output of fully-
convolutional implementation of conv layers. 

Performance optimization: can evaluate 
convolutional layers once on large input, then reuse 
intermediate output many times to approximate 
response of a subregion of image.

ROI pool
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Optimization 2: region of interest pooling

for all proposed regions (x,y,w,h):   // 1000’s of regions/image 
   cropped = image_crop(image, bbox(x,y,w,h)) 
   resized = image_resize(227,227) 
   label = detect_object(resized) 

conv5_response = evaluate_conv_layers(image) 
for all proposed regions (x,y,w,h): 
   region_conv5 = roi_pool(conv5_response, bbox(x,y,w,h)) 
   label = evaluate_fully_connected_layers(region_conv5) 

This is a form of “approximate common subexpression elimination”

computed once per image

redundant work (many regions 
overlap, so responses at lower 
network layers are computed 
many times
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Fast R-CNN pipeline
Input image: 
(of any size)

Object 
Proposal 

generator
ROI 

pooling layer

Fully-
connected 

layers

List of proposed 
regions (~2000)

Pixel region 
(of canonical size) object 

label

for each proposed region

DNN 
(conv layers only!)

Response maps

bbox

class-label 
softmax

bbox 
regression 

softmax

Evaluation speed: 146x faster than R-CNN (47sec/img →0.32 sec/img) 
[This number excludes cost of proposals]

Training speed: 9x faster than R-CNN 
Training mini-batch: pick N images, pick 128/N boxes from each image (allows sharing of conv-layer 
pre-computation for multiple image-box training samples) 
Simultaneously train class predictions and bbox predictions: joint loss = class label loss + bbox loss 
Note: training updates weights in BOTH fully connected/softmax layers AND conv layers

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

SPPnet BB [11]† 07 \ diff 73.9 72.3 62.5 51.5 44.4 74.4 73.0 74.4 42.3 73.6 57.7 70.3 74.6 74.3 54.2 34.0 56.4 56.4 67.9 73.5 63.1

R-CNN BB [10] 07 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0

FRCN [ours] 07 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8 66.9

FRCN [ours] 07 \ diff 74.6 79.0 68.6 57.0 39.3 79.5 78.6 81.9 48.0 74.0 67.4 80.5 80.7 74.1 69.6 31.8 67.1 68.4 75.3 65.5 68.1

FRCN [ours] 07+12 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4 70.0

Table 1. VOC 2007 test detection average precision (%). All methods use VGG16. Training set key: 07: VOC07 trainval, 07 \ diff: 07

without “difficult” examples, 07+12: union of 07 and VOC12 trainval. †SPPnet results were prepared by the authors of [11].

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

BabyLearning Prop. 77.7 73.8 62.3 48.8 45.4 67.3 67.0 80.3 41.3 70.8 49.7 79.5 74.7 78.6 64.5 36.0 69.9 55.7 70.4 61.7 63.8

R-CNN BB [10] 12 79.3 72.4 63.1 44.0 44.4 64.6 66.3 84.9 38.8 67.3 48.4 82.3 75.0 76.7 65.7 35.8 66.2 54.8 69.1 58.8 62.9

SegDeepM 12+seg 82.3 75.2 67.1 50.7 49.8 71.1 69.6 88.2 42.5 71.2 50.0 85.7 76.6 81.8 69.3 41.5 71.9 62.2 73.2 64.6 67.2

FRCN [ours] 12 80.1 74.4 67.7 49.4 41.4 74.2 68.8 87.8 41.9 70.1 50.2 86.1 77.3 81.1 70.4 33.3 67.0 63.3 77.2 60.0 66.1

FRCN [ours] 07++12 82.0 77.8 71.6 55.3 42.4 77.3 71.7 89.3 44.5 72.1 53.7 87.7 80.0 82.5 72.7 36.6 68.7 65.4 81.1 62.7 68.8

Table 2. VOC 2010 test detection average precision (%). BabyLearning uses a network based on [17]. All other methods use VGG16.
Training set key: 12: VOC12 trainval, Prop.: proprietary dataset, 12+seg: 12 with segmentation annotations, 07++12: union of VOC07
trainval, VOC07 test, and VOC12 trainval.

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

BabyLearning Prop. 78.0 74.2 61.3 45.7 42.7 68.2 66.8 80.2 40.6 70.0 49.8 79.0 74.5 77.9 64.0 35.3 67.9 55.7 68.7 62.6 63.2

NUS NIN c2000 Unk. 80.2 73.8 61.9 43.7 43.0 70.3 67.6 80.7 41.9 69.7 51.7 78.2 75.2 76.9 65.1 38.6 68.3 58.0 68.7 63.3 63.8

R-CNN BB [10] 12 79.6 72.7 61.9 41.2 41.9 65.9 66.4 84.6 38.5 67.2 46.7 82.0 74.8 76.0 65.2 35.6 65.4 54.2 67.4 60.3 62.4

FRCN [ours] 12 80.3 74.7 66.9 46.9 37.7 73.9 68.6 87.7 41.7 71.1 51.1 86.0 77.8 79.8 69.8 32.1 65.5 63.8 76.4 61.7 65.7

FRCN [ours] 07++12 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2 68.4

Table 3. VOC 2012 test detection average precision (%). BabyLearning and NUS NIN c2000 use networks based on [17]. All other
methods use VGG16. Training set key: see Table 2, Unk.: unknown.

to this CaffeNet as model S, for “small.” The second net-
work is VGG CNN M 1024 from [3], which has the same
depth as S, but is wider. We call this network model M,
for “medium.” The final network is the very deep VGG16
model from [20]. Since this model is the largest, we call
it model L. In this section, all experiments use single-scale

training and testing (s = 600; see Section 5.2 for details).

4.2. VOC 2010 and 2012 results

On these datasets, we compare Fast R-CNN (FRCN, for
short) against the top methods on the comp4 (outside data)
track from the public leaderboard (Table 2, Table 3).3 For
the NUS NIN c2000 and BabyLearning methods, there are
no associated publications at this time and we could not
find exact information on the ConvNet architectures used;
they are variants of the Network-in-Network design [17].
All other methods are initialized from the same pre-trained
VGG16 network.

Fast R-CNN achieves the top result on VOC12 with a
mAP of 65.7% (and 68.4% with extra data). It is also two
orders of magnitude faster than the other methods, which
are all based on the “slow” R-CNN pipeline. On VOC10,

3http://host.robots.ox.ac.uk:8080/leaderboard
(accessed April 18, 2015)

SegDeepM [25] achieves a higher mAP than Fast R-CNN
(67.2% vs. 66.1%). SegDeepM is trained on VOC12 train-
val plus segmentation annotations; it is designed to boost
R-CNN accuracy by using a Markov random field to reason
over R-CNN detections and segmentations from the O2P
[1] semantic-segmentation method. Fast R-CNN can be
swapped into SegDeepM in place of R-CNN, which may
lead to better results. When using the enlarged 07++12
training set (see Table 2 caption), Fast R-CNN’s mAP in-
creases to 68.8%, surpassing SegDeepM.

4.3. VOC 2007 results

On VOC07, we compare Fast R-CNN to R-CNN and
SPPnet. All methods start from the same pre-trained
VGG16 network and use bounding-box regression. The
VGG16 SPPnet results were computed by the authors of
[11]. SPPnet uses five scales during both training and test-
ing. The improvement of Fast R-CNN over SPPnet illus-
trates that even though Fast R-CNN uses single-scale train-
ing and testing, fine-tuning the conv layers provides a large
improvement in mAP (from 63.1% to 66.9%). R-CNN
achieves a mAP of 66.0%. As a minor point, SPPnet was
trained without examples marked as “difficult” in PASCAL.
Removing these examples improves Fast R-CNN mAP to
68.1%. All other experiments use “difficult” examples.

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

SPPnet BB [11]† 07 \ diff 73.9 72.3 62.5 51.5 44.4 74.4 73.0 74.4 42.3 73.6 57.7 70.3 74.6 74.3 54.2 34.0 56.4 56.4 67.9 73.5 63.1

R-CNN BB [10] 07 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0

FRCN [ours] 07 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8 66.9

FRCN [ours] 07 \ diff 74.6 79.0 68.6 57.0 39.3 79.5 78.6 81.9 48.0 74.0 67.4 80.5 80.7 74.1 69.6 31.8 67.1 68.4 75.3 65.5 68.1

FRCN [ours] 07+12 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4 70.0

Table 1. VOC 2007 test detection average precision (%). All methods use VGG16. Training set key: 07: VOC07 trainval, 07 \ diff: 07

without “difficult” examples, 07+12: union of 07 and VOC12 trainval. †SPPnet results were prepared by the authors of [11].

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

BabyLearning Prop. 77.7 73.8 62.3 48.8 45.4 67.3 67.0 80.3 41.3 70.8 49.7 79.5 74.7 78.6 64.5 36.0 69.9 55.7 70.4 61.7 63.8

R-CNN BB [10] 12 79.3 72.4 63.1 44.0 44.4 64.6 66.3 84.9 38.8 67.3 48.4 82.3 75.0 76.7 65.7 35.8 66.2 54.8 69.1 58.8 62.9

SegDeepM 12+seg 82.3 75.2 67.1 50.7 49.8 71.1 69.6 88.2 42.5 71.2 50.0 85.7 76.6 81.8 69.3 41.5 71.9 62.2 73.2 64.6 67.2

FRCN [ours] 12 80.1 74.4 67.7 49.4 41.4 74.2 68.8 87.8 41.9 70.1 50.2 86.1 77.3 81.1 70.4 33.3 67.0 63.3 77.2 60.0 66.1

FRCN [ours] 07++12 82.0 77.8 71.6 55.3 42.4 77.3 71.7 89.3 44.5 72.1 53.7 87.7 80.0 82.5 72.7 36.6 68.7 65.4 81.1 62.7 68.8

Table 2. VOC 2010 test detection average precision (%). BabyLearning uses a network based on [17]. All other methods use VGG16.
Training set key: 12: VOC12 trainval, Prop.: proprietary dataset, 12+seg: 12 with segmentation annotations, 07++12: union of VOC07
trainval, VOC07 test, and VOC12 trainval.

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

BabyLearning Prop. 78.0 74.2 61.3 45.7 42.7 68.2 66.8 80.2 40.6 70.0 49.8 79.0 74.5 77.9 64.0 35.3 67.9 55.7 68.7 62.6 63.2

NUS NIN c2000 Unk. 80.2 73.8 61.9 43.7 43.0 70.3 67.6 80.7 41.9 69.7 51.7 78.2 75.2 76.9 65.1 38.6 68.3 58.0 68.7 63.3 63.8

R-CNN BB [10] 12 79.6 72.7 61.9 41.2 41.9 65.9 66.4 84.6 38.5 67.2 46.7 82.0 74.8 76.0 65.2 35.6 65.4 54.2 67.4 60.3 62.4

FRCN [ours] 12 80.3 74.7 66.9 46.9 37.7 73.9 68.6 87.7 41.7 71.1 51.1 86.0 77.8 79.8 69.8 32.1 65.5 63.8 76.4 61.7 65.7

FRCN [ours] 07++12 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2 68.4

Table 3. VOC 2012 test detection average precision (%). BabyLearning and NUS NIN c2000 use networks based on [17]. All other
methods use VGG16. Training set key: see Table 2, Unk.: unknown.

to this CaffeNet as model S, for “small.” The second net-
work is VGG CNN M 1024 from [3], which has the same
depth as S, but is wider. We call this network model M,
for “medium.” The final network is the very deep VGG16
model from [20]. Since this model is the largest, we call
it model L. In this section, all experiments use single-scale

training and testing (s = 600; see Section 5.2 for details).

4.2. VOC 2010 and 2012 results

On these datasets, we compare Fast R-CNN (FRCN, for
short) against the top methods on the comp4 (outside data)
track from the public leaderboard (Table 2, Table 3).3 For
the NUS NIN c2000 and BabyLearning methods, there are
no associated publications at this time and we could not
find exact information on the ConvNet architectures used;
they are variants of the Network-in-Network design [17].
All other methods are initialized from the same pre-trained
VGG16 network.

Fast R-CNN achieves the top result on VOC12 with a
mAP of 65.7% (and 68.4% with extra data). It is also two
orders of magnitude faster than the other methods, which
are all based on the “slow” R-CNN pipeline. On VOC10,

3http://host.robots.ox.ac.uk:8080/leaderboard
(accessed April 18, 2015)

SegDeepM [25] achieves a higher mAP than Fast R-CNN
(67.2% vs. 66.1%). SegDeepM is trained on VOC12 train-
val plus segmentation annotations; it is designed to boost
R-CNN accuracy by using a Markov random field to reason
over R-CNN detections and segmentations from the O2P
[1] semantic-segmentation method. Fast R-CNN can be
swapped into SegDeepM in place of R-CNN, which may
lead to better results. When using the enlarged 07++12
training set (see Table 2 caption), Fast R-CNN’s mAP in-
creases to 68.8%, surpassing SegDeepM.

4.3. VOC 2007 results

On VOC07, we compare Fast R-CNN to R-CNN and
SPPnet. All methods start from the same pre-trained
VGG16 network and use bounding-box regression. The
VGG16 SPPnet results were computed by the authors of
[11]. SPPnet uses five scales during both training and test-
ing. The improvement of Fast R-CNN over SPPnet illus-
trates that even though Fast R-CNN uses single-scale train-
ing and testing, fine-tuning the conv layers provides a large
improvement in mAP (from 63.1% to 66.9%). R-CNN
achieves a mAP of 66.0%. As a minor point, SPPnet was
trained without examples marked as “difficult” in PASCAL.
Removing these examples improves Fast R-CNN mAP to
68.1%. All other experiments use “difficult” examples.

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

SPPnet BB [11]† 07 \ diff 73.9 72.3 62.5 51.5 44.4 74.4 73.0 74.4 42.3 73.6 57.7 70.3 74.6 74.3 54.2 34.0 56.4 56.4 67.9 73.5 63.1

R-CNN BB [10] 07 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0

FRCN [ours] 07 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8 66.9

FRCN [ours] 07 \ diff 74.6 79.0 68.6 57.0 39.3 79.5 78.6 81.9 48.0 74.0 67.4 80.5 80.7 74.1 69.6 31.8 67.1 68.4 75.3 65.5 68.1

FRCN [ours] 07+12 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4 70.0

Table 1. VOC 2007 test detection average precision (%). All methods use VGG16. Training set key: 07: VOC07 trainval, 07 \ diff: 07

without “difficult” examples, 07+12: union of 07 and VOC12 trainval. †SPPnet results were prepared by the authors of [11].

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

BabyLearning Prop. 77.7 73.8 62.3 48.8 45.4 67.3 67.0 80.3 41.3 70.8 49.7 79.5 74.7 78.6 64.5 36.0 69.9 55.7 70.4 61.7 63.8

R-CNN BB [10] 12 79.3 72.4 63.1 44.0 44.4 64.6 66.3 84.9 38.8 67.3 48.4 82.3 75.0 76.7 65.7 35.8 66.2 54.8 69.1 58.8 62.9

SegDeepM 12+seg 82.3 75.2 67.1 50.7 49.8 71.1 69.6 88.2 42.5 71.2 50.0 85.7 76.6 81.8 69.3 41.5 71.9 62.2 73.2 64.6 67.2

FRCN [ours] 12 80.1 74.4 67.7 49.4 41.4 74.2 68.8 87.8 41.9 70.1 50.2 86.1 77.3 81.1 70.4 33.3 67.0 63.3 77.2 60.0 66.1

FRCN [ours] 07++12 82.0 77.8 71.6 55.3 42.4 77.3 71.7 89.3 44.5 72.1 53.7 87.7 80.0 82.5 72.7 36.6 68.7 65.4 81.1 62.7 68.8

Table 2. VOC 2010 test detection average precision (%). BabyLearning uses a network based on [17]. All other methods use VGG16.
Training set key: 12: VOC12 trainval, Prop.: proprietary dataset, 12+seg: 12 with segmentation annotations, 07++12: union of VOC07
trainval, VOC07 test, and VOC12 trainval.

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

BabyLearning Prop. 78.0 74.2 61.3 45.7 42.7 68.2 66.8 80.2 40.6 70.0 49.8 79.0 74.5 77.9 64.0 35.3 67.9 55.7 68.7 62.6 63.2

NUS NIN c2000 Unk. 80.2 73.8 61.9 43.7 43.0 70.3 67.6 80.7 41.9 69.7 51.7 78.2 75.2 76.9 65.1 38.6 68.3 58.0 68.7 63.3 63.8

R-CNN BB [10] 12 79.6 72.7 61.9 41.2 41.9 65.9 66.4 84.6 38.5 67.2 46.7 82.0 74.8 76.0 65.2 35.6 65.4 54.2 67.4 60.3 62.4

FRCN [ours] 12 80.3 74.7 66.9 46.9 37.7 73.9 68.6 87.7 41.7 71.1 51.1 86.0 77.8 79.8 69.8 32.1 65.5 63.8 76.4 61.7 65.7

FRCN [ours] 07++12 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2 68.4

Table 3. VOC 2012 test detection average precision (%). BabyLearning and NUS NIN c2000 use networks based on [17]. All other
methods use VGG16. Training set key: see Table 2, Unk.: unknown.

to this CaffeNet as model S, for “small.” The second net-
work is VGG CNN M 1024 from [3], which has the same
depth as S, but is wider. We call this network model M,
for “medium.” The final network is the very deep VGG16
model from [20]. Since this model is the largest, we call
it model L. In this section, all experiments use single-scale

training and testing (s = 600; see Section 5.2 for details).

4.2. VOC 2010 and 2012 results

On these datasets, we compare Fast R-CNN (FRCN, for
short) against the top methods on the comp4 (outside data)
track from the public leaderboard (Table 2, Table 3).3 For
the NUS NIN c2000 and BabyLearning methods, there are
no associated publications at this time and we could not
find exact information on the ConvNet architectures used;
they are variants of the Network-in-Network design [17].
All other methods are initialized from the same pre-trained
VGG16 network.

Fast R-CNN achieves the top result on VOC12 with a
mAP of 65.7% (and 68.4% with extra data). It is also two
orders of magnitude faster than the other methods, which
are all based on the “slow” R-CNN pipeline. On VOC10,

3http://host.robots.ox.ac.uk:8080/leaderboard
(accessed April 18, 2015)

SegDeepM [25] achieves a higher mAP than Fast R-CNN
(67.2% vs. 66.1%). SegDeepM is trained on VOC12 train-
val plus segmentation annotations; it is designed to boost
R-CNN accuracy by using a Markov random field to reason
over R-CNN detections and segmentations from the O2P
[1] semantic-segmentation method. Fast R-CNN can be
swapped into SegDeepM in place of R-CNN, which may
lead to better results. When using the enlarged 07++12
training set (see Table 2 caption), Fast R-CNN’s mAP in-
creases to 68.8%, surpassing SegDeepM.

4.3. VOC 2007 results

On VOC07, we compare Fast R-CNN to R-CNN and
SPPnet. All methods start from the same pre-trained
VGG16 network and use bounding-box regression. The
VGG16 SPPnet results were computed by the authors of
[11]. SPPnet uses five scales during both training and test-
ing. The improvement of Fast R-CNN over SPPnet illus-
trates that even though Fast R-CNN uses single-scale train-
ing and testing, fine-tuning the conv layers provides a large
improvement in mAP (from 63.1% to 66.9%). R-CNN
achieves a mAP of 66.0%. As a minor point, SPPnet was
trained without examples marked as “difficult” in PASCAL.
Removing these examples improves Fast R-CNN mAP to
68.1%. All other experiments use “difficult” examples.

[Girshick 2015]
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Problem: bottleneck is now generating proposals

Input image: 
(of any size)

Object 
Proposal 

generator
ROI 

pooling layer

Fully-
connected 

layers

List of proposed 
regions (~2000)

Pixel region 
(of canonical size) object 

label

for each proposed region

DNN 
(conv layers only!)

Response maps

bbox

class-label 
softmax

bbox 
regression 

softmax

Selective search [Uijlings 13] ~ 10 sec/image on CPU
EdgeBoxes [Zitnick 14] ~ 0.2 sec/image on CPU

Idea: why not predict regions from the convolutional feature maps that must be 
computed for detection anyway? (share computation between proposals and detection)
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Faster R-CNN using a region proposal network (RPN)

Input image: 
(of any size)

DNN 
(conv layers only!)

Response maps

Region proposal 
network

List of proposed 
regions

ROI 
pooling layer

for each proposed 
region

…

[Ren 2015]
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Faster R-CNN using a region proposal network (RPN)

Input image: 
(of any size)

DNN 
(conv layers only!)

Response maps 
WxHx512

512 3x3 conv filters 
(3x3x512x512 weights)

objectness score 
(for 9 boxes)

1x1 conv 
(2-way softmax) 

512 x (9*2) weights

bbox offset 
(for 9 boxes)

1x1 conv 
(bbox regressor) 

512 x (9x4) weights
4

car : 1.000

dog : 0.997

person : 0.992

person : 0.979

horse : 0.993

conv feature map

intermediate layer
256-d

2k scores 4k coordinates

sliding window

reg layercls layer

k anchor boxes

bus : 0.996

person : 0.736

boat : 0.970

person : 0.989

person : 0.983
person : 0.983

person : 0.925

cat : 0.982

dog : 0.994

Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL
VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

anchors. An anchor is centered at the sliding window
in question, and is associated with a scale and aspect
ratio (Figure 3, left). By default we use 3 scales and
3 aspect ratios, yielding k = 9 anchors at each sliding
position. For a convolutional feature map of a size
W ⇥H (typically ⇠2,400), there are WHk anchors in
total.

Translation-Invariant Anchors
An important property of our approach is that it

is translation invariant, both in terms of the anchors
and the functions that compute proposals relative to
the anchors. If one translates an object in an image,
the proposal should translate and the same function
should be able to predict the proposal in either lo-
cation. This translation-invariant property is guaran-
teed by our method5. As a comparison, the MultiBox
method [27] uses k-means to generate 800 anchors,
which are not translation invariant. So MultiBox does
not guarantee that the same proposal is generated if
an object is translated.

The translation-invariant property also reduces the
model size. MultiBox has a (4 + 1)⇥ 800-dimensional
fully-connected output layer, whereas our method has
a (4 + 2) ⇥ 9-dimensional convolutional output layer
in the case of k = 9 anchors. As a result, our output
layer has 2.8 ⇥ 104 parameters (512 ⇥ (4 + 2) ⇥ 9
for VGG-16), two orders of magnitude fewer than
MultiBox’s output layer that has 6.1⇥ 106 parameters
(1536 ⇥ (4 + 1) ⇥ 800 for GoogleNet [34] in MultiBox
[27]). If considering the feature projection layers, our
proposal layers still have an order of magnitude fewer
parameters than MultiBox6. We expect our method
to have less risk of overfitting on small datasets, like
PASCAL VOC.

5. As is the case of FCNs [7], our network is translation invariant
up to the network’s total stride.

6. Considering the feature projection layers, our proposal layers’
parameter count is 3 ⇥ 3 ⇥ 512 ⇥ 512 + 512 ⇥ 6 ⇥ 9 = 2.4 ⇥ 106;
MultiBox’s proposal layers’ parameter count is 7⇥ 7⇥ (64 + 96 +
64 + 64)⇥ 1536 + 1536⇥ 5⇥ 800 = 27⇥ 106.

Multi-Scale Anchors as Regression References
Our design of anchors presents a novel scheme

for addressing multiple scales (and aspect ratios). As
shown in Figure 1, there have been two popular ways
for multi-scale predictions. The first way is based on
image/feature pyramids, e.g., in DPM [8] and CNN-
based methods [9], [1], [2]. The images are resized at
multiple scales, and feature maps (HOG [8] or deep
convolutional features [9], [1], [2]) are computed for
each scale (Figure 1(a)). This way is often useful but
is time-consuming. The second way is to use sliding
windows of multiple scales (and/or aspect ratios) on
the feature maps. For example, in DPM [8], models
of different aspect ratios are trained separately using
different filter sizes (such as 5⇥7 and 7⇥5). If this way
is used to address multiple scales, it can be thought
of as a “pyramid of filters” (Figure 1(b)). The second
way is usually adopted jointly with the first way [8].

As a comparison, our anchor-based method is built
on a pyramid of anchors, which is more cost-efficient.
Our method classifies and regresses bounding boxes
with reference to anchor boxes of multiple scales and
aspect ratios. It only relies on images and feature
maps of a single scale, and uses filters (sliding win-
dows on the feature map) of a single size. We show by
experiments the effects of this scheme for addressing
multiple scales and sizes (Table 8).

Because of this multi-scale design based on anchors,
we can simply use the convolutional features com-
puted on a single-scale image, as is also done by
the Fast R-CNN detector [2]. The design of multi-
scale anchors is a key component for sharing features
without extra cost for addressing scales.

3.1.2 Loss Function
For training RPNs, we assign a binary class label
(of being an object or not) to each anchor. We as-
sign a positive label to two kinds of anchors: (i) the
anchor/anchors with the highest Intersection-over-
Union (IoU) overlap with a ground-truth box, or (ii) an
anchor that has an IoU overlap higher than 0.7 with

3x3 conv projects into 512-element vector per 
spatial position (assuming VGG input conv layers, 
receptive field for each output is ~228x228 pixels)

At each point assume 9 “anchor boxes” of various 
aspect ratios and scales

Given 512-element vector predict “objectness score” 
of each anchor + bbox correction to anchor
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Training faster R-CNN

Goal: want to jointly learn 
- Region prediction network weights 
- Object classification network weights 
- While constraining initial conv layers to be the same (for efficiency)

Input image: 
(of any size)

DNN 
(conv layers)

Response maps 
WxHx512

512 3x3 conv filters 
(3x3x512x512 weights)

objectness score 
(for 9 boxes)

1x1 conv 
(2-way softmax) 

512 x (9*2) weights

bbox offset 
(for 9 boxes)

1x1 conv 
(bbox regressor) 

512 x (9x4) weights

ROI 
pooling layer

Fully-
connected 

layers

Pixel region 
(of canonical size) object 

label

for each proposed region

bbox

class-label softmax

bbox regression 
softmax

List of proposed 
regions
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Alternating training strategy
▪ Train region proposal network (RPN) 

- Using loss based on ground-truth object bounding boxes 
- Positive example: intersection over union with ground truth box is above threshold 
- Negative example: intersection over union is less than threshold 

▪ Then use trained RPN to train Fast R-CNN 
- Using loss based on detections and bbox regression 

▪ Use conv layers from R-CNN to initialize RPN 
▪ Fine-tune RPN 

- Using loss based on ground-truth boxes 
▪ Use updated RPN to fine tune Fast R-CNN 

- Using loss based on detections and bbox regression 
▪ Repeat… 

▪ Notice: solution learns to predict boxes that are “good for object-detection task”  
- “End-to-end” optimization for object-detection task 
- Compare to using off-the-shelf object-proposal algorithm
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Faster R-CNN results

8

Table 3: Detection results on PASCAL VOC 2007 test set. The detector is Fast R-CNN and VGG-16. Training
data: “07”: VOC 2007 trainval, “07+12”: union set of VOC 2007 trainval and VOC 2012 trainval. For RPN,
the train-time proposals for Fast R-CNN are 2000. †: this number was reported in [2]; using the repository
provided by this paper, this result is higher (68.1).

method # proposals data mAP (%)
SS 2000 07 66.9†

SS 2000 07+12 70.0
RPN+VGG, unshared 300 07 68.5

RPN+VGG, shared 300 07 69.9
RPN+VGG, shared 300 07+12 73.2
RPN+VGG, shared 300 COCO+07+12 78.8

Table 4: Detection results on PASCAL VOC 2012 test set. The detector is Fast R-CNN and VGG-16. Training
data: “07”: VOC 2007 trainval, “07++12”: union set of VOC 2007 trainval+test and VOC 2012 trainval. For
RPN, the train-time proposals for Fast R-CNN are 2000. †: http://host.robots.ox.ac.uk:8080/anonymous/HZJTQA.html. ‡:
http://host.robots.ox.ac.uk:8080/anonymous/YNPLXB.html. §: http://host.robots.ox.ac.uk:8080/anonymous/XEDH10.html.

method # proposals data mAP (%)
SS 2000 12 65.7
SS 2000 07++12 68.4

RPN+VGG, shared† 300 12 67.0
RPN+VGG, shared‡ 300 07++12 70.4
RPN+VGG, shared§ 300 COCO+07++12 75.9

Table 5: Timing (ms) on a K40 GPU, except SS proposal is evaluated in a CPU. “Region-wise” includes NMS,
pooling, fully-connected, and softmax layers. See our released code for the profiling of running time.

model system conv proposal region-wise total rate
VGG SS + Fast R-CNN 146 1510 174 1830 0.5 fps
VGG RPN + Fast R-CNN 141 10 47 198 5 fps

ZF RPN + Fast R-CNN 31 3 25 59 17 fps

100 proposals at test-time, indicating that the top-
ranked RPN proposals are accurate. On the other
extreme, using the top-ranked 6000 RPN proposals
(without NMS) has a comparable mAP (55.2%), sug-
gesting NMS does not harm the detection mAP and
may reduce false alarms.

Next, we separately investigate the roles of RPN’s
cls and reg outputs by turning off either of them
at test-time. When the cls layer is removed at test-
time (thus no NMS/ranking is used), we randomly
sample N proposals from the unscored regions. The
mAP is nearly unchanged with N = 1000 (55.8%), but
degrades considerably to 44.6% when N = 100. This
shows that the cls scores account for the accuracy of
the highest ranked proposals.

On the other hand, when the reg layer is removed
at test-time (so the proposals become anchor boxes),
the mAP drops to 52.1%. This suggests that the high-
quality proposals are mainly due to the regressed box
bounds. The anchor boxes, though having multiple
scales and aspect ratios, are not sufficient for accurate
detection.

We also evaluate the effects of more powerful net-
works on the proposal quality of RPN alone. We use
VGG-16 to train the RPN, and still use the above
detector of SS+ZF. The mAP improves from 56.8%

(using RPN+ZF) to 59.2% (using RPN+VGG). This is a
promising result, because it suggests that the proposal
quality of RPN+VGG is better than that of RPN+ZF.
Because proposals of RPN+ZF are competitive with
SS (both are 58.7% when consistently used for training
and testing), we may expect RPN+VGG to be better
than SS. The following experiments justify this hy-
pothesis.

Performance of VGG-16. Table 3 shows the results
of VGG-16 for both proposal and detection. Using
RPN+VGG, the result is 68.5% for unshared features,
slightly higher than the SS baseline. As shown above,
this is because the proposals generated by RPN+VGG
are more accurate than SS. Unlike SS that is pre-
defined, the RPN is actively trained and benefits from
better networks. For the feature-shared variant, the
result is 69.9%—better than the strong SS baseline, yet
with nearly cost-free proposals. We further train the
RPN and detection network on the union set of PAS-
CAL VOC 2007 trainval and 2012 trainval. The mAP
is 73.2%. Figure 5 shows some results on the PASCAL
VOC 2007 test set. On the PASCAL VOC 2012 test set
(Table 4), our method has an mAP of 70.4% trained
on the union set of VOC 2007 trainval+test and VOC
2012 trainval. Table 6 and Table 7 show the detailed
numbers.
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Table 3: Detection results on PASCAL VOC 2007 test set. The detector is Fast R-CNN and VGG-16. Training
data: “07”: VOC 2007 trainval, “07+12”: union set of VOC 2007 trainval and VOC 2012 trainval. For RPN,
the train-time proposals for Fast R-CNN are 2000. †: this number was reported in [2]; using the repository
provided by this paper, this result is higher (68.1).

method # proposals data mAP (%)
SS 2000 07 66.9†

SS 2000 07+12 70.0
RPN+VGG, unshared 300 07 68.5

RPN+VGG, shared 300 07 69.9
RPN+VGG, shared 300 07+12 73.2
RPN+VGG, shared 300 COCO+07+12 78.8

Table 4: Detection results on PASCAL VOC 2012 test set. The detector is Fast R-CNN and VGG-16. Training
data: “07”: VOC 2007 trainval, “07++12”: union set of VOC 2007 trainval+test and VOC 2012 trainval. For
RPN, the train-time proposals for Fast R-CNN are 2000. †: http://host.robots.ox.ac.uk:8080/anonymous/HZJTQA.html. ‡:
http://host.robots.ox.ac.uk:8080/anonymous/YNPLXB.html. §: http://host.robots.ox.ac.uk:8080/anonymous/XEDH10.html.

method # proposals data mAP (%)
SS 2000 12 65.7
SS 2000 07++12 68.4

RPN+VGG, shared† 300 12 67.0
RPN+VGG, shared‡ 300 07++12 70.4
RPN+VGG, shared§ 300 COCO+07++12 75.9

Table 5: Timing (ms) on a K40 GPU, except SS proposal is evaluated in a CPU. “Region-wise” includes NMS,
pooling, fully-connected, and softmax layers. See our released code for the profiling of running time.

model system conv proposal region-wise total rate
VGG SS + Fast R-CNN 146 1510 174 1830 0.5 fps
VGG RPN + Fast R-CNN 141 10 47 198 5 fps

ZF RPN + Fast R-CNN 31 3 25 59 17 fps

100 proposals at test-time, indicating that the top-
ranked RPN proposals are accurate. On the other
extreme, using the top-ranked 6000 RPN proposals
(without NMS) has a comparable mAP (55.2%), sug-
gesting NMS does not harm the detection mAP and
may reduce false alarms.

Next, we separately investigate the roles of RPN’s
cls and reg outputs by turning off either of them
at test-time. When the cls layer is removed at test-
time (thus no NMS/ranking is used), we randomly
sample N proposals from the unscored regions. The
mAP is nearly unchanged with N = 1000 (55.8%), but
degrades considerably to 44.6% when N = 100. This
shows that the cls scores account for the accuracy of
the highest ranked proposals.

On the other hand, when the reg layer is removed
at test-time (so the proposals become anchor boxes),
the mAP drops to 52.1%. This suggests that the high-
quality proposals are mainly due to the regressed box
bounds. The anchor boxes, though having multiple
scales and aspect ratios, are not sufficient for accurate
detection.

We also evaluate the effects of more powerful net-
works on the proposal quality of RPN alone. We use
VGG-16 to train the RPN, and still use the above
detector of SS+ZF. The mAP improves from 56.8%

(using RPN+ZF) to 59.2% (using RPN+VGG). This is a
promising result, because it suggests that the proposal
quality of RPN+VGG is better than that of RPN+ZF.
Because proposals of RPN+ZF are competitive with
SS (both are 58.7% when consistently used for training
and testing), we may expect RPN+VGG to be better
than SS. The following experiments justify this hy-
pothesis.

Performance of VGG-16. Table 3 shows the results
of VGG-16 for both proposal and detection. Using
RPN+VGG, the result is 68.5% for unshared features,
slightly higher than the SS baseline. As shown above,
this is because the proposals generated by RPN+VGG
are more accurate than SS. Unlike SS that is pre-
defined, the RPN is actively trained and benefits from
better networks. For the feature-shared variant, the
result is 69.9%—better than the strong SS baseline, yet
with nearly cost-free proposals. We further train the
RPN and detection network on the union set of PAS-
CAL VOC 2007 trainval and 2012 trainval. The mAP
is 73.2%. Figure 5 shows some results on the PASCAL
VOC 2007 test set. On the PASCAL VOC 2012 test set
(Table 4), our method has an mAP of 70.4% trained
on the union set of VOC 2007 trainval+test and VOC
2012 trainval. Table 6 and Table 7 show the detailed
numbers.

Specializing region proposals for object-detection task yields better accuracy.
SS = selective search for object proposals

Shared convolutions improve algorithm performance:
Values are times in ms
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Summary
▪ Knowledge of algorithm and properties of DNN used to gain 

algorithmic speedups 
- Not just “modify the schedule of the loops” 

▪ Key insight: sharing results of convolutional layer computations: 
- Between different proposed regions (proposed object bboxes) 

- Between region proposal logic and detection logic 

▪ Example of “end-to-end” training 
- Back-propagate through entire algorithm to train all components at once 

- Better accuracy: globally optimize the various parts of the algorithm to be optimal 
for given task (Faster R-CNN: how to propose boxes learned simultaneously with 
detection logic)  

- Can constrain learning to preserve performance characteristics (Faster R-CNN: conv 
layer weights shared across RPN and detection task) 



 Stanford CS348K, Fall 2018

Extending to instance segmentation

[Image credit: He et al. 2017]
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Figure 5. More results of Mask R-CNN on COCO test images, using ResNet-101-FPN and running at 5 fps, with 35.7 mask AP (Table 1).

backbone AP AP50 AP75 APS APM APL

MNC [10] ResNet-101-C4 24.6 44.3 24.8 4.7 25.9 43.6
FCIS [26] +OHEM ResNet-101-C5-dilated 29.2 49.5 - 7.1 31.3 50.0
FCIS+++ [26] +OHEM ResNet-101-C5-dilated 33.6 54.5 - - - -
Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1
Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4
Mask R-CNN ResNeXt-101-FPN 37.1 60.0 39.4 16.9 39.9 53.5

Table 1. Instance segmentation mask AP on COCO test-dev. MNC [10] and FCIS [26] are the winners of the COCO 2015 and 2016
segmentation challenges, respectively. Without bells and whistles, Mask R-CNN outperforms the more complex FCIS+++, which includes
multi-scale train/test, horizontal flip test, and OHEM [38]. All entries are single-model results.

can predict K masks per RoI, but we only use the k-th mask,
where k is the predicted class by the classification branch.
The m⇥m floating-number mask output is then resized to
the RoI size, and binarized at a threshold of 0.5.

Note that since we only compute masks on the top 100
detection boxes, Mask R-CNN adds a small overhead to its
Faster R-CNN counterpart (e.g., ⇠20% on typical models).

4. Experiments: Instance Segmentation
We perform a thorough comparison of Mask R-CNN to

the state of the art along with comprehensive ablations on
the COCO dataset [28]. We report the standard COCO met-
rics including AP (averaged over IoU thresholds), AP50,
AP75, and APS , APM , APL (AP at different scales). Un-
less noted, AP is evaluating using mask IoU. As in previous
work [5, 27], we train using the union of 80k train images
and a 35k subset of val images (trainval35k), and re-
port ablations on the remaining 5k val images (minival).
We also report results on test-dev [28].

4.1. Main Results
We compare Mask R-CNN to the state-of-the-art meth-

ods in instance segmentation in Table 1. All instantia-
tions of our model outperform baseline variants of pre-
vious state-of-the-art models. This includes MNC [10]
and FCIS [26], the winners of the COCO 2015 and 2016
segmentation challenges, respectively. Without bells and
whistles, Mask R-CNN with ResNet-101-FPN backbone
outperforms FCIS+++ [26], which includes multi-scale
train/test, horizontal flip test, and online hard example min-
ing (OHEM) [38]. While outside the scope of this work, we
expect many such improvements to be applicable to ours.

Mask R-CNN outputs are visualized in Figures 2 and 5.
Mask R-CNN achieves good results even under challeng-
ing conditions. In Figure 6 we compare our Mask R-CNN
baseline and FCIS+++ [26]. FCIS+++ exhibits systematic
artifacts on overlapping instances, suggesting that it is chal-
lenged by the fundamental difficulty of instance segmenta-
tion. Mask R-CNN shows no such artifacts.

5
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Mask RCNN
▪ Extend Faster R-CNN to also emit a segmentation per box 

- Previously: box and class emitted in parallel 
- Now: box, class, and segmentation emitted in parallel

or bins (i.e., we use x/16 instead of [x/16]). We use bi-
linear interpolation [22] to compute the exact values of the
input features at four regularly sampled locations in each
RoI bin, and aggregate the result (using max or average),
see Figure 3 for details. We note that the results are not sen-
sitive to the exact sampling locations, or how many points
are sampled, as long as no quantization is performed.

RoIAlign leads to large improvements as we show in
§4.2. We also compare to the RoIWarp operation proposed
in [10]. Unlike RoIAlign, RoIWarp overlooked the align-
ment issue and was implemented in [10] as quantizing RoI
just like RoIPool. So even though RoIWarp also adopts
bilinear resampling motivated by [22], it performs on par
with RoIPool as shown by experiments (more details in Ta-
ble 2c), demonstrating the crucial role of alignment.

Network Architecture: To demonstrate the generality of
our approach, we instantiate Mask R-CNN with multiple
architectures. For clarity, we differentiate between: (i) the
convolutional backbone architecture used for feature ex-
traction over an entire image, and (ii) the network head

for bounding-box recognition (classification and regression)
and mask prediction that is applied separately to each RoI.

We denote the backbone architecture using the nomen-
clature network-depth-features. We evaluate ResNet [19]
and ResNeXt [45] networks of depth 50 or 101 layers. The
original implementation of Faster R-CNN with ResNets
[19] extracted features from the final convolutional layer
of the 4-th stage, which we call C4. This backbone with
ResNet-50, for example, is denoted by ResNet-50-C4. This
is a common choice used in [19, 10, 21, 39].

We also explore another more effective backbone re-
cently proposed by Lin et al. [27], called a Feature Pyra-
mid Network (FPN). FPN uses a top-down architecture with
lateral connections to build an in-network feature pyramid
from a single-scale input. Faster R-CNN with an FPN back-
bone extracts RoI features from different levels of the fea-
ture pyramid according to their scale, but otherwise the
rest of the approach is similar to vanilla ResNet. Using a
ResNet-FPN backbone for feature extraction with Mask R-
CNN gives excellent gains in both accuracy and speed. For
further details on FPN, we refer readers to [27].

For the network head we closely follow architectures
presented in previous work to which we add a fully con-
volutional mask prediction branch. Specifically, we ex-
tend the Faster R-CNN box heads from the ResNet [19]
and FPN [27] papers. Details are shown in Figure 4. The
head on the ResNet-C4 backbone includes the 5-th stage of
ResNet (namely, the 9-layer ‘res5’ [19]), which is compute-
intensive. For FPN, the backbone already includes res5 and
thus allows for a more efficient head that uses fewer filters.

We note that our mask branches have a straightforward
structure. More complex designs have the potential to im-
prove performance but are not the focus of this work.

ave
RoI

RoI
14×14
×256

7×7
×256

14×14
×256

1024

28×28
×256

1024

mask

14×14
×256

class

box
2048RoI res5

7×7
×1024

7×7
×2048

×4

class

box

14×14
×80

mask

28×28
×80

Faster R-CNN
w/ ResNet [19]

Faster R-CNN
w/ FPN [27]

Figure 4. Head Architecture: We extend two existing Faster R-
CNN heads [19, 27]. Left/Right panels show the heads for the
ResNet C4 and FPN backbones, from [19] and [27], respectively,
to which a mask branch is added. Numbers denote spatial resolu-
tion and channels. Arrows denote either conv, deconv, or fc layers
as can be inferred from context (conv preserves spatial dimension
while deconv increases it). All convs are 3⇥3, except the output
conv which is 1⇥1, deconvs are 2⇥2 with stride 2, and we use
ReLU [31] in hidden layers. Left: ‘res5’ denotes ResNet’s fifth
stage, which for simplicity we altered so that the first conv oper-
ates on a 7⇥7 RoI with stride 1 (instead of 14⇥14 / stride 2 as in
[19]). Right: ‘⇥4’ denotes a stack of four consecutive convs.

3.1. Implementation Details
We set hyper-parameters following existing Fast/Faster

R-CNN work [12, 36, 27]. Although these decisions were
made for object detection in original papers [12, 36, 27], we
found our instance segmentation system is robust to them.

Training: As in Fast R-CNN, an RoI is considered positive
if it has IoU with a ground-truth box of at least 0.5 and
negative otherwise. The mask loss Lmask is defined only on
positive RoIs. The mask target is the intersection between
an RoI and its associated ground-truth mask.

We adopt image-centric training [12]. Images are resized
such that their scale (shorter edge) is 800 pixels [27]. Each
mini-batch has 2 images per GPU and each image has N
sampled RoIs, with a ratio of 1:3 of positive to negatives
[12]. N is 64 for the C4 backbone (as in [12, 36]) and 512
for FPN (as in [27]). We train on 8 GPUs (so effective mini-
batch size is 16) for 160k iterations, with a learning rate of
0.02 which is decreased by 10 at the 120k iteration. We
use a weight decay of 0.0001 and momentum of 0.9. With
ResNeXt [45], we train with 1 image per GPU and the same
number of iterations, with a starting learning rate of 0.01.

The RPN anchors span 5 scales and 3 aspect ratios, fol-
lowing [27]. For convenient ablation, RPN is trained sep-
arately and does not share features with Mask R-CNN, un-
less specified. For every entry in this paper, RPN and Mask
R-CNN have the same backbones and so they are shareable.

Inference: At test time, the proposal number is 300 for the
C4 backbone (as in [36]) and 1000 for FPN (as in [27]). We
run the box prediction branch on these proposals, followed
by non-maximum suppression [14]. The mask branch is
then applied to the highest scoring 100 detection boxes. Al-
though this differs from the parallel computation used in
training, it speeds up inference and improves accuracy (due
to the use of fewer, more accurate RoIs). The mask branch

4

ROI 
pooling layer 

(ROIAlign)

Pixel region of canonical size (7x7) 
Output of resampling the region generated by 

the Faster R-CNN region proposal network 

binary masks for 80 
output classes

per-class scores (80)

bbox adjustments
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Mask R-CNN for human pose

Figure 7. Keypoint detection results on COCO test using Mask R-CNN (ResNet-50-FPN), with person segmentation masks predicted
from the same model. This model has a keypoint AP of 63.1 and runs at 5 fps.

APkp APkp
50 APkp

75 APkp
M APkp

L

CMU-Pose+++ [6] 61.8 84.9 67.5 57.1 68.2
G-RMI [32]† 62.4 84.0 68.5 59.1 68.1
Mask R-CNN, keypoint-only 62.7 87.0 68.4 57.4 71.1
Mask R-CNN, keypoint & mask 63.1 87.3 68.7 57.8 71.4

Table 4. Keypoint detection AP on COCO test-dev. Ours is a
single model (ResNet-50-FPN) that runs at 5 fps. CMU-Pose+++
[6] is the 2016 competition winner that uses multi-scale testing,
post-processing with CPM [44], and filtering with an object detec-
tor, adding a cumulative ⇠5 points (clarified in personal commu-
nication). †: G-RMI was trained on COCO plus MPII [1] (25k im-
ages), using two models (Inception-ResNet-v2 for bounding box
detection and ResNet-101 for keypoints).

single point to be detected). We note that as in instance seg-
mentation, the K keypoints are still treated independently.

We adopt the ResNet-FPN variant, and the keypoint head
architecture is similar to that in Figure 4 (right). The key-
point head consists of a stack of eight 3⇥3 512-d conv lay-
ers, followed by a deconv layer and 2⇥ bilinear upscaling,
producing an output resolution of 56⇥56. We found that
a relatively high resolution output (compared to masks) is
required for keypoint-level localization accuracy.

Models are trained on all COCO trainval35k im-
ages that contain annotated keypoints. To reduce overfit-
ting, as this training set is smaller, we train using image
scales randomly sampled from [640, 800] pixels; inference
is on a single scale of 800 pixels. We train for 90k iterations,
starting from a learning rate of 0.02 and reducing it by 10 at
60k and 80k iterations. We use bounding-box NMS with a
threshold of 0.5. Other details are identical as in §3.1.

Main Results and Ablations: We evaluate the person key-
point AP (APkp) and experiment with a ResNet-50-FPN
backbone; more backbones will be studied in the appendix.
Table 4 shows that our result (62.7 APkp) is 0.9 points higher
than the COCO 2016 keypoint detection winner [6] that
uses a multi-stage processing pipeline (see caption of Ta-
ble 4). Our method is considerably simpler and faster.

More importantly, we have a unified model that can si-

APbb
person

APmask
person

APkp

Faster R-CNN 52.5 - -
Mask R-CNN, mask-only 53.6 45.8 -
Mask R-CNN, keypoint-only 50.7 - 64.2
Mask R-CNN, keypoint & mask 52.0 45.1 64.7

Table 5. Multi-task learning of box, mask, and keypoint about the
person category, evaluated on minival. All entries are trained
on the same data for fair comparisons. The backbone is ResNet-
50-FPN. The entries with 64.2 and 64.7 AP on minival have
test-dev AP of 62.7 and 63.1, respectively (see Table 4).

APkp APkp
50 APkp

75 APkp
M APkp

L

RoIPool 59.8 86.2 66.7 55.1 67.4
RoIAlign 64.2 86.6 69.7 58.7 73.0

Table 6. RoIAlign vs. RoIPool for keypoint detection on
minival. The backbone is ResNet-50-FPN.

multaneously predict boxes, segments, and keypoints while
running at 5 fps. Adding a segment branch (for the per-
son category) improves the APkp to 63.1 (Table 4) on
test-dev. More ablations of multi-task learning on
minival are in Table 5. Adding the mask branch to the
box-only (i.e., Faster R-CNN) or keypoint-only versions
consistently improves these tasks. However, adding the
keypoint branch reduces the box/mask AP slightly, suggest-
ing that while keypoint detection benefits from multitask
training, it does not in turn help the other tasks. Neverthe-
less, learning all three tasks jointly enables a unified system
to efficiently predict all outputs simultaneously (Figure 7).

We also investigate the effect of RoIAlign on keypoint
detection (Table 6). Though this ResNet-50-FPN backbone
has finer strides (e.g., 4 pixels on the finest level), RoIAlign
still shows significant improvement over RoIPool and in-
creases APkp by 4.4 points. This is because keypoint detec-
tions are more sensitive to localization accuracy. This again
indicates that alignment is essential for pixel-level localiza-
tion, including masks and keypoints.

Given the effectiveness of Mask R-CNN for extracting
object bounding boxes, masks, and keypoints, we expect it
be an effective framework for other instance-level tasks.

8

▪ Loss based on bitmapped with hot pixels at joint keypoint locations rather than 
segmentation masks
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An alternative approach to object detection

for all proposed regions (x,y,w,h): 
   cropped = image_crop(image, bbox(x,y,w,h)) 
   resized = image_resize(classifier_width,classifier_height) 
   label = classify_object(resized) 
   bbox_adjustment = adjust_bbox(resized) 

Recall structure of algorithms so far: (reduce detection to classification)

New approach to detection: 
for each level l of network: 
  for each (x,y) position in output: 
     use region around (l,x,y) to directly predict which anchor boxes 
     centered at (x,y) are valid and class score for that box 

If there are B anchor boxes and C classes, then…
At each (l,x,y), prediction network has B x (C + 4) outputs  

For each anchor B, there are C class probabilities + 4 values to adjust the anchor box
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SSD: Single shot multi box detector

4 Liu et al.
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Fig. 2: A comparison between two single shot detection models: SSD and YOLO [5].
Our SSD model adds several feature layers to the end of a base network, which predict
the offsets to default boxes of different scales and aspect ratios and their associated
confidences. SSD with a 300 ⇥ 300 input size significantly outperforms its 448 ⇥ 448
YOLO counterpart in accuracy on VOC2007 test while also improving the speed.

box position relative to each feature map location (cf the architecture of YOLO[5] that
uses an intermediate fully connected layer instead of a convolutional filter for this step).
Default boxes and aspect ratios We associate a set of default bounding boxes with
each feature map cell, for multiple feature maps at the top of the network. The default
boxes tile the feature map in a convolutional manner, so that the position of each box
relative to its corresponding cell is fixed. At each feature map cell, we predict the offsets
relative to the default box shapes in the cell, as well as the per-class scores that indicate
the presence of a class instance in each of those boxes. Specifically, for each box out of
k at a given location, we compute c class scores and the 4 offsets relative to the original
default box shape. This results in a total of (c+ 4)k filters that are applied around each
location in the feature map, yielding (c+ 4)kmn outputs for a m⇥ n feature map. For
an illustration of default boxes, please refer to Fig. 1. Our default boxes are similar to
the anchor boxes used in Faster R-CNN [2], however we apply them to several feature
maps of different resolutions. Allowing different default box shapes in several feature
maps let us efficiently discretize the space of possible output box shapes.

2.2 Training

The key difference between training SSD and training a typical detector that uses region
proposals, is that ground truth information needs to be assigned to specific outputs in
the fixed set of detector outputs. Some version of this is also required for training in
YOLO[5] and for the region proposal stage of Faster R-CNN[2] and MultiBox[7]. Once
this assignment is determined, the loss function and back propagation are applied end-
to-end. Training also involves choosing the set of default boxes and scales for detection
as well as the hard negative mining and data augmentation strategies.

Deep feature hierarchy of fully convolutional layers

multibox detectors operating on 
different scales of features

If feature maps have P channels (e.g., P=512 and 256 below) 
Each classifier is a 3x3xP filter 
(C + 4) filters for one anchor bbox 
(assume one of the C categories is “background”)  

Note: diagram shows only the feature maps

[Lui ECCV 2016]
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SSD anchor boxes SSD: Single Shot MultiBox Detector 3

(a) Image with GT boxes (b) 8⇥ 8 feature map (c) 4⇥ 4 feature map

loc : �(cx, cy, w, h)
conf : (c1, c2, · · · , cp)

Fig. 1: SSD framework. (a) SSD only needs an input image and ground truth boxes for
each object during training. In a convolutional fashion, we evaluate a small set (e.g. 4)
of default boxes of different aspect ratios at each location in several feature maps with
different scales (e.g. 8 ⇥ 8 and 4 ⇥ 4 in (b) and (c)). For each default box, we predict
both the shape offsets and the confidences for all object categories ((c1, c2, · · · , cp)).
At training time, we first match these default boxes to the ground truth boxes. For
example, we have matched two default boxes with the cat and one with the dog, which
are treated as positives and the rest as negatives. The model loss is a weighted sum
between localization loss (e.g. Smooth L1 [6]) and confidence loss (e.g. Softmax).

2.1 Model

The SSD approach is based on a feed-forward convolutional network that produces
a fixed-size collection of bounding boxes and scores for the presence of object class
instances in those boxes, followed by a non-maximum suppression step to produce the
final detections. The early network layers are based on a standard architecture used for
high quality image classification (truncated before any classification layers), which we
will call the base network2. We then add auxiliary structure to the network to produce
detections with the following key features:

Multi-scale feature maps for detection We add convolutional feature layers to the end
of the truncated base network. These layers decrease in size progressively and allow
predictions of detections at multiple scales. The convolutional model for predicting
detections is different for each feature layer (cf Overfeat[4] and YOLO[5] that operate
on a single scale feature map).

Convolutional predictors for detection Each added feature layer (or optionally an ex-
isting feature layer from the base network) can produce a fixed set of detection predic-
tions using a set of convolutional filters. These are indicated on top of the SSD network
architecture in Fig. 2. For a feature layer of size m ⇥ n with p channels, the basic el-
ement for predicting parameters of a potential detection is a 3 ⇥ 3 ⇥ p small kernel
that produces either a score for a category, or a shape offset relative to the default box
coordinates. At each of the m⇥ n locations where the kernel is applied, it produces an
output value. The bounding box offset output values are measured relative to a default

2 We use the VGG-16 network as a base, but other networks should also produce good results.

Anchor boxes at each feature map level are of different sizes 

Intuition: receptive field of cells at higher levels of the network (lower resolution 
feature maps) is a larger fraction of the image, have information to make 
predictions for larger boxes
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Object detection performance
600x600 input images

[Credit: Tensorflow detection model zoo]
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Back to video
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Interest in processing video efficiently
▪ Benefits to datacenter applications: 

- Lower cost/frame enables processing of more streams (e.g., thousands 
of webcams) 

▪ Benefits to edge devices: 

- Cheaper per frame costs, real-time performance on cheaper/lower 
energy computing hardware 

- Lower latency per frame 

- Example: automated breaking systems target ~40ms sense to brake 
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Thought experiment
Imagine we wanted to detect people/cars/bikes in a video stream
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Trick 0: video stream subsampling
▪ Spatial downsampling: run detector on low-resolution image 

▪ Temporal subsampling: run detector at low frame rate
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Trick 1: exploit temporal coherence
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Temporal differencing
▪ Idea: use labels from empty frame image if similar to background 

image 

▪ Idea: use same result as previous frame if two frames are 
sufficiently similar 
- How to define sufficiently similar? (thresholds)? 
- Differences in feature space more robust than over pixels

we are generally only interested in identifying a small number of
objects—as opposed to the thousands of classes a generic NN can
classify—and, in video inference, such objects may only appear from
a small number of angles or configurations.

NOSCOPE performs model specialization by applying a larger, ref-
erence model to a target video and using the output of the larger model
to train a smaller, specialized model. Given sufficient training data
from the reference model for a specific video, the specialized model
can be trained to mimic the reference model on the video while requir-
ing fewer computational resources (e.g., NN layers) compared to the
reference model. However, unlike the reference model, the special-
ized model learns from examples from the target video and is unlikely
to generalize to other videos or queries. Thus, by sacrificing general-
ization and performing both training and inference on a restricted task
and input data distribution, we can substantially reduce inference cost.

Critically, in contrast with related approaches to model compres-
sion [8, 41, 45], the goal of model specialization is not to provide a
model that is indistinguishable from the reference model on all tasks;
rather, the goal of model specialization is to provide a model that is in-
distinguishable (to a given accuracy target) for a restricted set of tasks.
This strategy allows efficient inference at the expense of generality.

NOSCOPE uses shallow NNs as its specialized models. Shal-
low NNs have been shown to be effective in other compression
routines [45], are efficient at inference time, and naturally output
a confidence in their classification. NOSCOPE uses this confidence
to defer to the reference model when the specialized model is not
confident (e.g., when no loss in accuracy can be tolerated).

NOSCOPE implements specialized NNs based on the AlexNet
architecture [56] (filter doubling, dropout), using ReLU units for all
the hidden layers and a softmax unit at the end to return a confidence
for the class we are querying. However, to reduce inference time,
NOSCOPE’s networks are significantly shallower than AlexNet. As
we discuss in Section 6, NOSCOPE performs automated model search
by varying several parameters of the specialized models, including
the number of convolutional layers (2 or 4), number of convolution
units in the base layer (32 or 64), and number of neurons in the dense
layer (32, 64, 128 or 256). As these models provide different tradeoffs
between speed and accuracy, NOSCOPE’s optimizer automatically
searches for the best model for each video stream and query.

Beyond configuring and learning a specialized model, NOSCOPE
also selects two thresholds on the specialized model’s confidence
c: clow is the threshold at below which NOSCOPE outputs no object
in frame, and chigh is the threshold above which NOSCOPE out-
puts object detected. For output values of c between clow and chigh,
NOSCOPE calls the full reference NN on the frame.

The choice of threshold and the choice of model both determine
speed and accuracy. For example, a specialized NN with many layers
and convolution units might be much more accurate (resulting in a
smaller [clow,chigh]) but more expensive to compute per frame. In
some cases, we should choose the less accurate NN that passes more
frames to our full model but is faster to evaluate on most input frames;
NOSCOPE’s optimizer automates this decision.

To train specialized NNs, NOSCOPE uses standard NN training
practices. NOSCOPE uses a continuous section of video for training
and cross-validation and learns NNs using RMSprop [46] for 1-5
epochs, with early stopping if the training loss increases. In addition,
during model search, NOSCOPE uses a separate evaluation set that
is not part of the training and cross-validation sets for each model.

As we illustrate in Section 9, specialized models trained using a
large model such as YOLOv2 deliver substantial speedups on many
datasets. By appropriately setting clow and chigh, NOSCOPE can reg-
ularly eliminate 90% of frames (and sometimes all frames) without
calling the full reference model while still preserving its accuracy

(a) empty frame (b) frame with a car (c) subtracted frames

Figure 2: Example of difference detection. The subtracted frame highlights
the car that entered the scene.

to a desired target. We also show that training these small models
on scene-specific data (frames from the same video) leads to better
performance than training them on generic object detection datasets.

While we have evaluated model specialization in the context of
binary classification on video streams, ongoing work suggests this
technique is applicable to other tasks (e.g., bounding box regression)
and settings (e.g., generic image classification).

5. DIFFERENCE DETECTION
The second key technique in NOSCOPE is the use of difference

detectors: extremely efficient models that detect changes in labels.
Given a labeled video frame (e.g. this frame does not have a car—a
“false” in our binary classification setting) and an unlabeled frame, a
difference detector determines whether the unlabeled frame has the
same or different label compared to the labeled frame. Using these
difference detectors, NOSCOPE can quickly determine when video
contents have changed. In videos where the frame rate is much higher
than the label change rate (e.g., a 30 frame per second video capturing
people walking across a 36 foot crosswalk), difference detectors can
provide up to 90⇥ speedups at inference time.

In general, the problem of determining label changes is as difficult
as the binary classification task. However, as we have hinted above,
videos contain a high degree of temporal locality, making the task
of detecting redundant frames much easier. Figure 2 demonstrates
this: subtracting a frame containing an empty scene from a frame
containing a car distinctly highlights the car. In addition, since NO-
SCOPE uses efficient difference detectors (i.e., much more efficient
than even specialized models), only a small fraction of frames need to
be filtered for difference detectors to be worth the cost of evaluation.

NOSCOPE leverages two forms of difference detectors:

1. Difference detection against a fixed reference image for the
video stream, that contains no objects. For example, for a
video of a sidewalk, the reference image might be a frame of an
empty sidewalk. NOSCOPE computes the reference image by
averaging frames where the reference model returns no labels.

2. Difference detection against an earlier frame a pre-configured
time tdi↵ seconds into the past. In this case, if there are no
significant differences, NOSCOPE returns the same labels that
it output for the previous frame. NOSCOPE’s optimizer learns
tdi↵ based on the input data.

The optimal choice of method is video-dependent, so NOSCOPE’s
optimizer performs selection automatically. For example, a video of
a mostly empty sidewalk might have a natural empty reference image
that one can cheaply and confidently compare with to skip many
empty frames. In contrast, a video of a city park might always contain
mobile objects (e.g., people lying down in the grass), but the objects
might move slowly enough that comparing with frames 1 second ago
can still eliminate many calls to the expensive reference model.

Given the two frames to compare, NOSCOPE’s difference detector
computes the Mean Square Error (MSE) between them as a measure
of distance. NOSCOPE either performs a comparison on the whole
image, or a blocked comparison where it subdivides each image into
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Tracking
Evaluate expensive detector sparsely in time (e.g., every 1/2 second), then use more efficient 
tracking algorithm to update annotations over sequence of frames
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Tracking
Evaluate expensive detector sparsely in time (e.g., every 1/2 second), then use more efficient 
tracking algorithm to update annotations over sequence of frames
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Leveraging motion in the network

Key idea: given features (or final 
segmentation result from prior frame) 
use flow between prior and current 
frame to advect features (or 
segmentation) to new frame. 

In other words: it’s easier to produce the 
result for the current frame if you have 
the result from the prior frame

[Zhu CVPR 2017]
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Leveraging motion in the network

In practice: despite “intellectual appeal” of advecting features, paper results show advecting 
segmentation is as good as advecting features.

[Zhu CVPR 2017]
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Trick 2: exploit temporal coherence at 
different scales
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A fully convolutional network for image segmentation

Upsampling network

tuned to segmentation as shown in 4.1, and even score
highly on the standard metric, their output is dissatisfyingly
coarse (see Figure 4). The 32 pixel stride at the final predic-
tion layer limits the scale of detail in the upsampled output.

We address this by adding skips [1] that combine the
final prediction layer with lower layers with finer strides.
This turns a line topology into a DAG, with edges that skip
ahead from lower layers to higher ones (Figure 3). As they
see fewer pixels, the finer scale predictions should need
fewer layers, so it makes sense to make them from shallower
net outputs. Combining fine layers and coarse layers lets the
model make local predictions that respect global structure.
By analogy to the jet of Koenderick and van Doorn [21], we
call our nonlinear feature hierarchy the deep jet.

We first divide the output stride in half by predicting
from a 16 pixel stride layer. We add a 1 ⇥ 1 convolution
layer on top of pool4 to produce additional class predic-
tions. We fuse this output with the predictions computed
on top of conv7 (convolutionalized fc7) at stride 32 by
adding a 2⇥ upsampling layer and summing6 both predic-
tions (see Figure 3). We initialize the 2⇥ upsampling to bi-
linear interpolation, but allow the parameters to be learned
as described in Section 3.3. Finally, the stride 16 predic-
tions are upsampled back to the image. We call this net
FCN-16s. FCN-16s is learned end-to-end, initialized with
the parameters of the last, coarser net, which we now call
FCN-32s. The new parameters acting on pool4 are zero-
initialized so that the net starts with unmodified predictions.
The learning rate is decreased by a factor of 100.

Learning this skip net improves performance on the val-
idation set by 3.0 mean IU to 62.4. Figure 4 shows im-
provement in the fine structure of the output. We compared
this fusion with learning only from the pool4 layer, which
resulted in poor performance, and simply decreasing the
learning rate without adding the skip, which resulted in an
insignificant performance improvement without improving
the quality of the output.

We continue in this fashion by fusing predictions from
pool3 with a 2⇥ upsampling of predictions fused from
pool4 and conv7, building the net FCN-8s. We obtain
a minor additional improvement to 62.7 mean IU, and find
a slight improvement in the smoothness and detail of our
output. At this point our fusion improvements have met di-
minishing returns, both with respect to the IU metric which
emphasizes large-scale correctness, and also in terms of the
improvement visible e.g. in Figure 4, so we do not continue
fusing even lower layers.

Refinement by other means Decreasing the stride of
pooling layers is the most straightforward way to obtain
finer predictions. However, doing so is problematic for our
VGG16-based net. Setting the pool5 stride to 1 requires
our convolutionalized fc6 to have kernel size 14 ⇥ 14 to

6Max fusion made learning difficult due to gradient switching.

FCN-32s FCN-16s FCN-8s Ground truth

Figure 4. Refining fully convolutional nets by fusing information
from layers with different strides improves segmentation detail.
The first three images show the output from our 32, 16, and 8
pixel stride nets (see Figure 3).

Table 2. Comparison of skip FCNs on a subset7 of PASCAL VOC
2011 segval. Learning is end-to-end, except for FCN-32s-fixed,
where only the last layer is fine-tuned. Note that FCN-32s is FCN-
VGG16, renamed to highlight stride.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-32s-fixed 83.0 59.7 45.4 72.0
FCN-32s 89.1 73.3 59.4 81.4
FCN-16s 90.0 75.7 62.4 83.0
FCN-8s 90.3 75.9 62.7 83.2

maintain its receptive field size. In addition to their com-
putational cost, we had difficulty learning such large filters.
We attempted to re-architect the layers above pool5 with
smaller filters, but did not achieve comparable performance;
one possible explanation is that the ILSVRC initialization
of the upper layers is important.

Another way to obtain finer predictions is to use the shift-
and-stitch trick described in Section 3.2. In limited exper-
iments, we found the cost to improvement ratio from this
method to be worse than layer fusion.

4.3. Experimental framework

Optimization We train by SGD with momentum. We
use a minibatch size of 20 images and fixed learning rates of
10�3, 10�4, and 5�5 for FCN-AlexNet, FCN-VGG16, and
FCN-GoogLeNet, respectively, chosen by line search. We
use momentum 0.9, weight decay of 5�4 or 2�4, and dou-
bled learning rate for biases, although we found training to
be sensitive to the learning rate alone. We zero-initialize the
class scoring layer, as random initialization yielded neither
better performance nor faster convergence. Dropout was in-
cluded where used in the original classifier nets.

Fine-tuning We fine-tune all layers by back-
propagation through the whole net. Fine-tuning the
output classifier alone yields only 70% of the full fine-
tuning performance as compared in Table 2. Training from
scratch is not feasible considering the time required to
learn the base classification nets. (Note that the VGG net is
trained in stages, while we initialize from the full 16-layer
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Temporal stability of deep(er) features
Clockwork Convnets for Video Semantic Segmentation 5

Fig. 2: The proportional difference between adjacent frames of semantic predictions
from a mid-level layer (pool4, green) and the deepest layer (fc7, blue) are shown
for the first 75 frames of two videos. We see that for a video with lots of motion (left)
the difference values are large while for a relatively static video (right) the difference
values are small. In both cases, the differences of the deeper fc7 are smaller than the
differences of the shallower pool4. The “velocity” of deep features is slow relative to
shallow features and most of all the input. At the same time, the differences between
shallow and deep layers are dependent since the features are compositional.

While deeper layers are more stable than shallower layers, for videos with enough
motion the score maps throughout the network may change substantially. For example,
in Figure 2 we show the differences for the first 75 frames of a video with large motion
(left) and with small motion (right). We would like our network to adaptively update
only when the deepest, most semantic layer (fc7) score map is likely to change. We
notice that though the intermediate layer (pool4) difference is always larger than the
deepest layer difference for any given frame, the pool4 differences are much larger
for the video with large motion than for the video with relatively small motion. This
observation forms the motivation for using the intermediate differences as an indicator
to determine the firing of an adaptive clock.

4 A Clockwork Network

We adapt the fully convolutional network (FCN) approach for image-to-image mapping
[1] to video frame processing. While it is straightforward to perform inference with a
still-image segmentation network on every video frame, this naı̈ve computation is inef-
ficient. Furthermore, disregarding the sequential nature of the input not only sacrifices
efficiency but discards potential temporal recognition cues. The temporal coherence of
video suggests the persistence of visual features from prior frames to inform inference
on the current frame. To this end we define the clockwork FCN, inspired by the clock-
work recurrent network [4], to carry temporal information across frames. A generalized
notion of clockwork relates both of these networks.

We consider both throughput and latency in the execution of deep networks across
video sequences. The inference time of the regular FCN-8s at ⇠ 100ms per frame of
size 500⇥500 on a standard GPU can be too slow for video. We first define fixed clocks
then extend to adaptive and potentially learned clockwork to drive network processing.
Whatever the task, any video network can be accelerated by our clockwork technique.

Clockwork Convnets for Video Semantic Segmentation 5

Fig. 2: The proportional difference between adjacent frames of semantic predictions
from a mid-level layer (pool4, green) and the deepest layer (fc7, blue) are shown
for the first 75 frames of two videos. We see that for a video with lots of motion (left)
the difference values are large while for a relatively static video (right) the difference
values are small. In both cases, the differences of the deeper fc7 are smaller than the
differences of the shallower pool4. The “velocity” of deep features is slow relative to
shallow features and most of all the input. At the same time, the differences between
shallow and deep layers are dependent since the features are compositional.

While deeper layers are more stable than shallower layers, for videos with enough
motion the score maps throughout the network may change substantially. For example,
in Figure 2 we show the differences for the first 75 frames of a video with large motion
(left) and with small motion (right). We would like our network to adaptively update
only when the deepest, most semantic layer (fc7) score map is likely to change. We
notice that though the intermediate layer (pool4) difference is always larger than the
deepest layer difference for any given frame, the pool4 differences are much larger
for the video with large motion than for the video with relatively small motion. This
observation forms the motivation for using the intermediate differences as an indicator
to determine the firing of an adaptive clock.

4 A Clockwork Network

We adapt the fully convolutional network (FCN) approach for image-to-image mapping
[1] to video frame processing. While it is straightforward to perform inference with a
still-image segmentation network on every video frame, this naı̈ve computation is inef-
ficient. Furthermore, disregarding the sequential nature of the input not only sacrifices
efficiency but discards potential temporal recognition cues. The temporal coherence of
video suggests the persistence of visual features from prior frames to inform inference
on the current frame. To this end we define the clockwork FCN, inspired by the clock-
work recurrent network [4], to carry temporal information across frames. A generalized
notion of clockwork relates both of these networks.

We consider both throughput and latency in the execution of deep networks across
video sequences. The inference time of the regular FCN-8s at ⇠ 100ms per frame of
size 500⇥500 on a standard GPU can be too slow for video. We first define fixed clocks
then extend to adaptive and potentially learned clockwork to drive network processing.
Whatever the task, any video network can be accelerated by our clockwork technique.

Observation: 
Deeper features feature more 
temporal stability 

(more “semantic” information 
changes less rapidly in a scene)

[Shelhamer ECCV16]
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Clockwork network: reuse deeper layer 
outputs in subsequent frames  6 E. Shelhamer⇤, K. Rakelly⇤, J. Hoffman⇤, and T. Darrell
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Fig. 3: The clockwork FCN with its stages and corresponding clocks.

A schematic of our clockwork FCN is shown in Figure 3.
There are several choice points in defining a clockwork architecture. We define a

novel, generalized clockwork framework, which can purposely schedule deeper lay-
ers more slowly than shallower layers. We form our modules by grouping the layers
of a convnet to span the feature hierarchy. Our networks persists both state and out-
put across time steps. The clockwork recurrent network of [4], designed for long-term
dependency modeling of time series, is an instance of our more general scheme for
clockwork computation. The differences in architecture and outputs over time between
clockwork recurrence and our clockwork are shown in Figure 4.

While different, these nets can be expressed by generalized clockwork equations

y
(t)
H = fT

⇣
C

(t)
H � fH(y(t�1)

H ) + C
(t)
I � fI(x

(t))
⌘

(1)

y
(t)
O = fO

⇣
C

(t)
O � fH(y(t)H )

⌘
(2)

with the state update defined by Equation 1 and the output defined by Equation 2. The
data x

(t), hidden state y
(t)
H output y(t)O vary with time t. The functions fI , fH , fO, fT

define input, hidden state, output, and transition operations respectively and are fixed
across time. The input, hidden, and output clocks C

(t)
I , C

(t)
H , C

(t)
O modulate network

operations by the elementwise product � with the corresponding function evaluations.
We recover the standard recurrent network (SRN), clockwork recurrent network (clock
RN), and our network (clock FCN) in this family of equations. The settings of functions
and clocks are collected in Table 2.

Inspired by the clockwork RN, we investigate persisting features and scheduling
layers to process video with a semantic segmentation convnet. Recalling the lessened
semantic rate of deeper layers observed in Section 3, the skip layers in FCNs originally
included to preserve resolution by fusing outputs are repurposed for this staged compu-
tation. We cache features and outputs over time at each step to harness the continuity of
video. In contrast, the clockwork RN persists state but output is only made according to
the clock, and each clockwork RN module is connected to itself and all slower modules
across time whereas a module in our network is only connected to itself across time.

Evaluate lower (early) layers each frame

Optionally combine (fresh) output of lower layers with output of higher layers from previous frames.

[Shelhamer ECCV16]
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Clockwork convnet
▪ Reduced latency: generate output only after evaluating first layer

frame 1 frame 2 frame 3 frame 4

stage 1

stage 2

stage 3

stage 1

stage 2

stage 3

stage 1

stage 2

stage 3

stage 1

stage 2

stage 3
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Clockwork convnet
▪ Increase throughput: update higher layers at a lower rate

frame 1 frame 2 frame 3 frame 4

stage 1

stage 2

stage 3

stage 1 stage 1

stage 2

stage 1

frame 5

stage 1

stage 2

stage 3
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Another example: parallel video networks
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ABSTRACT
We introduce a class of video understanding models that aims
to improve e�ciency for both dense and sparse tasks, e.g. per-
frame human pose estimation and per-sequence action recognition.
Leveraging operation pipelining and variable update rates, these
models consolidate an internal state and perform a minimal amount
of computation (e.g. as few as two convolutional layers) for each
new frame to produce an output. The models are still very deep,
with dozens of such operations being performed but in a pipelined
fashion that enables depth-parallel computation. We demonstrate
that the accuracy of the parallel models is comparable to that of
sequential models, setting up the stage for more e�cient video
understanding.

1 EFFICIENT CAUSAL VIDEO PROCESSING
We are interested in improving the e�ciency of deep video under-
standing networks for general temporal tasks such as navigating a
scene, tracking objects and people, or recognising actions in videos,
in the causal setting, i.e. frame-by-frame and without looking into
the future. We study two general design principles for improving
e�ciency that can be applied to any video network: (i) pipelining
with skip connections (see �g. 1), and (ii) exponentially diminishing
clock rates along network depth, similar to 3D ConvNets [2, 15].

Let �� be a deep function approximator parametrised by � having
D layers, which perform non-linear operations �d 2 {1,D } on their
inputs. For ConvNets, this operation is typically represented by
k > 0 sequential convolutions each followed by a non-linearity such
as ReLu. Given a video sequence with n frames fi 2 {1,n } and frame
rate f , let G be the oriented graph obtained by unrolling the model
over time (see Fig. 1). The nodes of the graph represent the non-
linear operations and the oriented edges are the (tensor) activations
transferred between them, establishing control dependencies. For
simplicity and without loss of generality, we assume that every
operation of the network can be computed in one cycle of duration
r . We de�ne the latency l of the model as the interval between the
moment when a new frame is available and the moment when the
network output for that frame is available. Real-time execution is
achieved i� l  f . We de�ne throughput as the output rate, i.e. how
often does the network produce an output.

∗Complete version of this manuscript is currently under review in CVPR2018.
†Shared �rst author.

Figure 1: Top: Standard (sequential) deep video network. Bot-
tom left: pipelinedmodelwhere layers execute in parallel re-
sulting in higher throughput. Bottom right: pipelinedmodel
with feedforward and feedback skip connections, which re-
duce latency. Vertical axis represents network depth, hori-
zontal axis represents time measured in video frames. For
simplicity, we assume each layer takes as much time to exe-
cute as loading one frame.

1.1 Pipelining with skip connections
State-of-the-art computer vision systems that operate on videos,
e.g. object detectors [10, 11], are most of the time inspired by image
models and have, at any point in time, a single layer that is actually
active, i.e. a single layer that processes the current frame, whilst all
the other layers (maybe hundreds of them) wait for their turn to
process the data. This is due to the dependency rule that underlies
the computation of a network’s output: oid = �d (o

i�1
d�1) for d 2

{1,D}, i 2 {1,n}, oi1 = fi . This rule is sequential in both depth and
time. Every new frame goes through the whole network, one layer
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at a time, before the output is known and another frame can be
processed1. The latency of this sequential model for frame fi is
given by lsi = i ⇥ D ⇥ r � f ⇥ (i � 1). If D ⇥ r  f , real-time
execution is achieved for every frame. If not, the latency of the
network increases over time almost linearly with the number of
already processed frames. Existing models deal with this issue by
skipping frames, arti�cially increasing f , i.e. lower frame rate and
implicitly lower throughput 1/(D ⇥ r ); see �g. 1, top.

Mechanisms to counteract the high latency and low throughput
due to sequential operation exist in both biological and human-
designed systems. Biological neurons are not tremendously fast,
but they come in large numbers and operate in a massively parallel
fashion [16]. General-purpose computer processors use e�cient
pipelining strategies. We propose a similar pipelining design for
deep video networks, which, in turn, enables depth-parallel process-
ing; see Fig. 1, bottom left. The model still has real-time execution
if D ⇥ r  f . But if not, the model now has guaranteed constant
latency lp = D ⇥ r , irrespective of the number of already processed
frames. This latency is equal to the latency of the sequential model,
but importantly, the throughput is high 1/r in this case.

Additionally, skip connections can be used to reduce this con-
stant latency further so that real-time execution can be achieved
irrespective of the depth of the model; see Fig 1, bottom right. How-
ever, feedforward skip connections can damage the performance
of the network due to the reduced computation depth. To counter-
act this issue, we add feedback skip connections that enhance the
context available at every time step.

1.2 Causal 3D ConvNets
Temporal tasks require scene representations that encode all the
attributes relevant to the task, e.g. object category, shape, relative
position, direction of motion etc. These representations must be
continuously updated to re�ect the scene dynamics. However, not
all attributes change at the same rate: objects do not change cat-
egory very often if at all, but their position can vary extremely
fast. Using a unique update rate for the entire representation – as
many deep video models currently do [1, 8, 9, 13, 14] – reveals as
sub-optimal2 [12]. We modify the model in Fig. 1, bottom right,
such that the deeper layers responsible for extracting more and
more abstract features, have an exponentially reduced update rate.
We employ 3D �lters to capture time dependencies and train the
models using backprop-through-time, making sure the output for
any new input frame depends only on past inputs while storing as
internal state the set of activations required for all temporal kernels.
When a new frame is available, the network needs to only extract
the fast-varying (shallow) features from the new frame to produce
an output.

2 EXPERIMENTS
The architecture we experimented with, called D3D, is shown in
�g. 2, with output layers for action recognition and human pose
heatmap estimation. We incorporate skip connections similar to

1Time-budget models [4, 6] use emergency exits to output the predictions computed
thus far when time runs out, but they still process the data sequentially.
2Models using 3D convolutions incorporate di�erent update rates naturally by using
di�erent time strides along depth [2, 15], but this usage is not trivial in causal settings.

Figure 2: D3D model composed of densely-connected
blocks [3]. Training uses 64-frame sequences and backprop-
through-time. Testing is done on whole videos. Each block
shows kernel sizes (time x width x height) and strides.

the popular DenseNet image model [3] – mini-blocks within each
block send skip connections to all the other mini-blocks after it.
In our case, these skip connections are in time, as shown in �g. 1.
The top-down connections arise from the end of each block (�0
to �4). We use the Kinetics dataset [5] for both tasks. For actions,
we use ground-truth labels and evaluate using top-1 accuracy. For
pose, we generate "ground-truth" keypoints automatically using
a state-of-the-art pose estimation model [7] and evaluate using
cross-entropy loss on the test set.

We trained 3 versions of the D3D model with di�erent degrees
of parallelism: a fully sequential one, an almost fully-parallel model
(k = 2), and a partly parallel model (k = 10), i.e. 10 sequential
convolutions are performed before transferring the data to the next
unrolling step. The results on the Kinetics test set are presented in
table 1. It can be observed that the model with partial parallelism is

Model Act. recogn. Pose estim. Speedup
D3D-par (k = 2) 53.9 0.39 9x
D3D-par (k = 10) 64.9 0.29 3.3x
D3D-seq (k = 58) 66.5 0.26 1x

Table 1: First column: D3D models with di�erent levels of
parallelism. Second column: test top1-accuracy for action
recognition (higher is better). Third column: cross-entropy
test loss for pose estimation (lower is better). Fourth col-
umn: throughput improvement (fps) achievable by paral-
lelization.

almost on-par with the sequential model, whereas the almost fully
parallel one has a slightly lower performance. This points to the
fact that our networks can be trained to withstand a signi�cant
degree of parallelism without major loss in performance. Our exper-
iments were performed using TensorFlow, which does not support
scheduling ops in parallel on the GPU, so we cannot measure yet
practical e�ciency gains, only a rough approximation of the upper
bound shown in table 1, right column – this is left as future work.
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ABSTRACT
We introduce a class of video understanding models that aims
to improve e�ciency for both dense and sparse tasks, e.g. per-
frame human pose estimation and per-sequence action recognition.
Leveraging operation pipelining and variable update rates, these
models consolidate an internal state and perform a minimal amount
of computation (e.g. as few as two convolutional layers) for each
new frame to produce an output. The models are still very deep,
with dozens of such operations being performed but in a pipelined
fashion that enables depth-parallel computation. We demonstrate
that the accuracy of the parallel models is comparable to that of
sequential models, setting up the stage for more e�cient video
understanding.

1 EFFICIENT CAUSAL VIDEO PROCESSING
We are interested in improving the e�ciency of deep video under-
standing networks for general temporal tasks such as navigating a
scene, tracking objects and people, or recognising actions in videos,
in the causal setting, i.e. frame-by-frame and without looking into
the future. We study two general design principles for improving
e�ciency that can be applied to any video network: (i) pipelining
with skip connections (see �g. 1), and (ii) exponentially diminishing
clock rates along network depth, similar to 3D ConvNets [2, 15].

Let �� be a deep function approximator parametrised by � having
D layers, which perform non-linear operations �d 2 {1,D } on their
inputs. For ConvNets, this operation is typically represented by
k > 0 sequential convolutions each followed by a non-linearity such
as ReLu. Given a video sequence with n frames fi 2 {1,n } and frame
rate f , let G be the oriented graph obtained by unrolling the model
over time (see Fig. 1). The nodes of the graph represent the non-
linear operations and the oriented edges are the (tensor) activations
transferred between them, establishing control dependencies. For
simplicity and without loss of generality, we assume that every
operation of the network can be computed in one cycle of duration
r . We de�ne the latency l of the model as the interval between the
moment when a new frame is available and the moment when the
network output for that frame is available. Real-time execution is
achieved i� l  f . We de�ne throughput as the output rate, i.e. how
often does the network produce an output.

∗Complete version of this manuscript is currently under review in CVPR2018.
†Shared �rst author.

Figure 1: Top: Standard (sequential) deep video network. Bot-
tom left: pipelinedmodelwhere layers execute in parallel re-
sulting in higher throughput. Bottom right: pipelinedmodel
with feedforward and feedback skip connections, which re-
duce latency. Vertical axis represents network depth, hori-
zontal axis represents time measured in video frames. For
simplicity, we assume each layer takes as much time to exe-
cute as loading one frame.

1.1 Pipelining with skip connections
State-of-the-art computer vision systems that operate on videos,
e.g. object detectors [10, 11], are most of the time inspired by image
models and have, at any point in time, a single layer that is actually
active, i.e. a single layer that processes the current frame, whilst all
the other layers (maybe hundreds of them) wait for their turn to
process the data. This is due to the dependency rule that underlies
the computation of a network’s output: oid = �d (o

i�1
d�1) for d 2

{1,D}, i 2 {1,n}, oi1 = fi . This rule is sequential in both depth and
time. Every new frame goes through the whole network, one layer

Non-pipelined execution

Pipelined execution

No skips 
(increases parallelism)

With skips 
(reduces latency) [Carriera et al. 2018]
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Trick 3: specialize to content

(specialization to video content can be viewed as a form of exploiting 
temporal coherence, why?)
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Model specialization
▪ Common principle in DNN design/training is to learn most general model 

(via large datasets, regularization, etc.) to perform well across all instances 
of a task 

▪ But many cameras see a very specific distribution of images 

- Only certain types of object classes 

- Always from the same/similar viewpoint 

- Objects appear in same regions of screen 

▪ Specialization has been a major theme in this class w.r.t hardware design.  
Now we wish to specialize models to the contents of a video stream 

- “A model can be must simpler if it only needs to work for a single 
camera”
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▪ Accurate, but expensive, model: trained on full training set 
- “The teacher” 

▪ Smaller model (cheaper) , trained to mimic the output of the teacher 
- “The student”

Model distillation [Hinton 15]
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Noscope
▪ Apply model distillation, but constrain training set to a specific video feed: 

Given an expensive network that performs a specified detection* task well on 
a wide range of videos, distill a highly optimized implementation for this 
video stream 

▪ Example: binary classification task on a single class, in an traffic camera video 
stream

* Noscope actually performs a simpler classification task on a pre-cropped region of the viewport 
(not detection, which involves object location)

we are generally only interested in identifying a small number of
objects—as opposed to the thousands of classes a generic NN can
classify—and, in video inference, such objects may only appear from
a small number of angles or configurations.

NOSCOPE performs model specialization by applying a larger, ref-
erence model to a target video and using the output of the larger model
to train a smaller, specialized model. Given sufficient training data
from the reference model for a specific video, the specialized model
can be trained to mimic the reference model on the video while requir-
ing fewer computational resources (e.g., NN layers) compared to the
reference model. However, unlike the reference model, the special-
ized model learns from examples from the target video and is unlikely
to generalize to other videos or queries. Thus, by sacrificing general-
ization and performing both training and inference on a restricted task
and input data distribution, we can substantially reduce inference cost.

Critically, in contrast with related approaches to model compres-
sion [8, 41, 45], the goal of model specialization is not to provide a
model that is indistinguishable from the reference model on all tasks;
rather, the goal of model specialization is to provide a model that is in-
distinguishable (to a given accuracy target) for a restricted set of tasks.
This strategy allows efficient inference at the expense of generality.

NOSCOPE uses shallow NNs as its specialized models. Shal-
low NNs have been shown to be effective in other compression
routines [45], are efficient at inference time, and naturally output
a confidence in their classification. NOSCOPE uses this confidence
to defer to the reference model when the specialized model is not
confident (e.g., when no loss in accuracy can be tolerated).

NOSCOPE implements specialized NNs based on the AlexNet
architecture [56] (filter doubling, dropout), using ReLU units for all
the hidden layers and a softmax unit at the end to return a confidence
for the class we are querying. However, to reduce inference time,
NOSCOPE’s networks are significantly shallower than AlexNet. As
we discuss in Section 6, NOSCOPE performs automated model search
by varying several parameters of the specialized models, including
the number of convolutional layers (2 or 4), number of convolution
units in the base layer (32 or 64), and number of neurons in the dense
layer (32, 64, 128 or 256). As these models provide different tradeoffs
between speed and accuracy, NOSCOPE’s optimizer automatically
searches for the best model for each video stream and query.

Beyond configuring and learning a specialized model, NOSCOPE
also selects two thresholds on the specialized model’s confidence
c: clow is the threshold at below which NOSCOPE outputs no object
in frame, and chigh is the threshold above which NOSCOPE out-
puts object detected. For output values of c between clow and chigh,
NOSCOPE calls the full reference NN on the frame.

The choice of threshold and the choice of model both determine
speed and accuracy. For example, a specialized NN with many layers
and convolution units might be much more accurate (resulting in a
smaller [clow,chigh]) but more expensive to compute per frame. In
some cases, we should choose the less accurate NN that passes more
frames to our full model but is faster to evaluate on most input frames;
NOSCOPE’s optimizer automates this decision.

To train specialized NNs, NOSCOPE uses standard NN training
practices. NOSCOPE uses a continuous section of video for training
and cross-validation and learns NNs using RMSprop [46] for 1-5
epochs, with early stopping if the training loss increases. In addition,
during model search, NOSCOPE uses a separate evaluation set that
is not part of the training and cross-validation sets for each model.

As we illustrate in Section 9, specialized models trained using a
large model such as YOLOv2 deliver substantial speedups on many
datasets. By appropriately setting clow and chigh, NOSCOPE can reg-
ularly eliminate 90% of frames (and sometimes all frames) without
calling the full reference model while still preserving its accuracy

(a) empty frame (b) frame with a car (c) subtracted frames

Figure 2: Example of difference detection. The subtracted frame highlights
the car that entered the scene.

to a desired target. We also show that training these small models
on scene-specific data (frames from the same video) leads to better
performance than training them on generic object detection datasets.

While we have evaluated model specialization in the context of
binary classification on video streams, ongoing work suggests this
technique is applicable to other tasks (e.g., bounding box regression)
and settings (e.g., generic image classification).

5. DIFFERENCE DETECTION
The second key technique in NOSCOPE is the use of difference

detectors: extremely efficient models that detect changes in labels.
Given a labeled video frame (e.g. this frame does not have a car—a
“false” in our binary classification setting) and an unlabeled frame, a
difference detector determines whether the unlabeled frame has the
same or different label compared to the labeled frame. Using these
difference detectors, NOSCOPE can quickly determine when video
contents have changed. In videos where the frame rate is much higher
than the label change rate (e.g., a 30 frame per second video capturing
people walking across a 36 foot crosswalk), difference detectors can
provide up to 90⇥ speedups at inference time.

In general, the problem of determining label changes is as difficult
as the binary classification task. However, as we have hinted above,
videos contain a high degree of temporal locality, making the task
of detecting redundant frames much easier. Figure 2 demonstrates
this: subtracting a frame containing an empty scene from a frame
containing a car distinctly highlights the car. In addition, since NO-
SCOPE uses efficient difference detectors (i.e., much more efficient
than even specialized models), only a small fraction of frames need to
be filtered for difference detectors to be worth the cost of evaluation.

NOSCOPE leverages two forms of difference detectors:

1. Difference detection against a fixed reference image for the
video stream, that contains no objects. For example, for a
video of a sidewalk, the reference image might be a frame of an
empty sidewalk. NOSCOPE computes the reference image by
averaging frames where the reference model returns no labels.

2. Difference detection against an earlier frame a pre-configured
time tdi↵ seconds into the past. In this case, if there are no
significant differences, NOSCOPE returns the same labels that
it output for the previous frame. NOSCOPE’s optimizer learns
tdi↵ based on the input data.

The optimal choice of method is video-dependent, so NOSCOPE’s
optimizer performs selection automatically. For example, a video of
a mostly empty sidewalk might have a natural empty reference image
that one can cheaply and confidently compare with to skip many
empty frames. In contrast, a video of a city park might always contain
mobile objects (e.g., people lying down in the grass), but the objects
might move slowly enough that comparing with frames 1 second ago
can still eliminate many calls to the expensive reference model.

Given the two frames to compare, NOSCOPE’s difference detector
computes the Mean Square Error (MSE) between them as a measure
of distance. NOSCOPE either performs a comparison on the whole
image, or a blocked comparison where it subdivides each image into

and are therefore far less computationally expensive. That is, instead
of simply running the reference NN over the target video, NOSCOPE
searches for, learns, and executes a query-specific pipeline of cheaper
models that approximates the reference model to a specified target ac-
curacy. NOSCOPE’s query-specific pipelines forego the generality of
the reference NN—that is, NOSCOPE’s cascades are only accurate in
detecting the target object in the target video—but in turn execute up
to three orders of magnitude faster (i.e., 265-15,500⇥ real-time) with
1-5% loss in accuracy for binary detection tasks over real-world fixed-
angle webcam and surveillance video. To do so, NOSCOPE leverages
both new types of models and a new optimizer for model search:

First, NOSCOPE’s specialized models forego the full generality of
the reference NN but faithfully mimic its behavior for the target query.
In the context of our example query of detecting buses, consider the
following buses that appeared in a public webcam in Taipei:

In this video stream, buses only appear from a small set of perspec-
tives. In contrast, NNs are often trained to recognize thousands of
objects, from sheep to apples, and from different angles; this leads
to unnecessary computational overhead. Thus, NOSCOPE instead
performs model specialization, using the full NN to generate labeled
training data (i.e., examples) and subsequently training smaller NNs
that are tailored to a given video stream and to a smaller class of
objects. NOSCOPE then executes these specialized models, which
are up to 340⇥ faster than the full NN, and consults the full NN only
when the specialized models are uncertain (i.e., produce results with
confidence below an automatically learned threshold).

Second, NOSCOPE’s difference detectors highlight temporal differ-
ences across frames. Consider the following frames, which appeared
sequentially in our Taipei webcam:

These frames are nearly identical, and all contain the same bus. There-
fore, instead of running the full NN (or a specialized NN) on each
frame, NOSCOPE learns a low-cost difference detector (based on
differences of frame content) that determines whether the contents
have changed across frames. NOSCOPE’s difference detectors are
fast and accurate—up to 100k frames per second on the CPU.

A key challenge in combining the above insights and models is that
the optimal choice of cascade is data-dependent. Individual model
performance varies across videos, with distinct trade-offs between
speed, selectivity, and accuracy. For example, a difference detector
based on subtraction from the previous frame might work well on
mostly static scenes but may add overhead in a video overseeing a
busy highway. Likewise, the complexity (e.g., number of layers) of
specialized NNs required to recognize different object classes varies
widely based on both the target object and video. Even setting the
thresholds in the cascade represents trade-off: should we make a dif-
ference detector’s threshold less aggressive to reduce its false negative
rate, or should we make it more aggressive to eliminate more frames
early in the pipeline and avoid calling a more expensive model?

To solve this problem, NOSCOPE performs inference-optimized
model search using a cost-based optimizer that automatically finds
a fast model cascade for a given query and accuracy target. The op-
timizer applies candidate models to training data, then computes the
optimal thresholds for each combination of models using an efficient
linear parameter sweep through the space of feasible thresholds. The
entire search requires time comparable to labeling the sample data
using the reference NN (an unavoidable step in obtaining such data).

We evaluate a NOSCOPE prototype on binary classification tasks
on cameras that are in a fixed location and at a fixed angle; this in-
cludes pedestrian and automotive detection as found in monitoring
and surveillance applications. NOSCOPE demonstrates up to three
order of magnitude speedups over general-purpose state-of-the-art
NNs while retaining high—and configurable—accuracy (within 1-
5%) across a range of videos, indicating a promising new strategy for
efficient inference and analysis of video data. In summary, we make
the following contributions in this work:

1. NOSCOPE, a system for accelerating neural network queries
over video via inference-optimized model search.

2. New techniques for a) neural network model specialization
based on a given video and query; b) fast difference detection
across frames; and c) cost-based optimization to automatically
identify the fastest cascade for a given accuracy target.

3. An evaluation of NOSCOPE on fixed-angle binary classifica-
tion demonstrating up to three orders of magnitude speedups
on real-world data.

The remainder of this paper proceeds as follows. Section 2 pro-
vides additional background on NNs and our target environment.
Section 3 describes the NOSCOPE architecture. Section 4 describes
NOSCOPE’s use of model specialization, Section 5 describes NO-
SCOPE’s difference detectors, and Section 6 describes NOSCOPE’s
inference-optimized model search via cost-based optimization. Sec-
tion 7 describes the NOSCOPE prototype implementation and Sec-
tion 8 describes limitations of the current system. Section 9 exper-
imentally evaluates NOSCOPE, Section 10 discusses related work,
and Section 11 concludes.

2. BACKGROUND
Given an input image or video, a host of computer vision methods

can extract valuable semantic information about objects and their
occurrences. In this section, we provide background on these meth-
ods, focusing on object detection tasks: given an image, what objects
does it contain? Readers familiar with computer vision may wish to
proceed to the next section.

Object Detection History and Goals. Automated object detection,
or the task of extracting object occurrences and their locations from
image data, dates to at least the 1960s [74]. Classic techniques [64,
86, 99] combine machine learning methods such as classification
and clustering with image-specific featurization techniques such as
SIFT [63]. More recent and advanced methods such as HOG [100],
deformable parts model [34] and selective search [88] are among the
most sophisticated of these classic approaches.

Following these early successes, artificial neural networks have im-
proved in accuracy to near-human or better-than-human levels in the
past five years. Now, these “deep” models (with millions to billions
of parameters) have become not only feasible but also the preferred
method for computer vision tasks spanning image classification [82],
pedestrian detection [98], and automatic captioning [29]. To under-
stand why, consider the PASCAL VOC 2012 [32] leaderboard, in
which classical methods were employed: the top three methods (in ac-
curacy) were NNs, and the winning entry, YOLOv2, runs at 80 fps. In
comparison, the top three classical methods take several seconds per
image to run and are 20% less accurate. NNs power image processing
tasks at online services including Google, Facebook, Instagram, and
Amazon as well as real-world tasks including autonomous driving.

NN Architecture. A neural network [40] consists of a series of con-
nected layers that can process a high-dimensional input image and
output a simpler representation. Each layer of a convolutional NN cor-

[Kang 17]
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Three Noscope optimizations
▪ Statically specialize model to video feed 

- Teacher network: Yolo object detection network 
- Student network: compact specialized network  (2-4 conv layers) 
- Low cost student “learns” to mimic the teacher  

▪ Dynamic: utilize frame-to-frame difference detectors with learned thresholds 
- “Same as background”, “same as previous frame” 
- Learn thresholds for how often to check for differences (in frames), and 

what the magnitude of a meaningful difference is 

▪ Dynamic: cascades 
- Run cheap specialized model (student) on frame first, then run teacher 

model if student does not make a confident prediction 
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Noscope results *

(a) taipei (b) coral

(c) amsterdam (d) night-street

(e) store (f) elevator

(g) roundabout

Figure 4: Accuracy vs. speedup achieved by NOSCOPE on each dataset.
Accuracy is the percent of correctly labeled time windows, and speedup is
over YOLOv2. Note the y-axis starts at 80%.

Table 2: Filter types and thresholds chosen by NOSCOPE’s CBO for each
video at 1% target false positive and false negative rates. Both the filter types
(e.g., global or blocked MSE) and their thresholds (e.g., the difference in MSE
that is considered significant, or the upper and lower detection thresholds for
the specialized models) vary significantly across videos. For the specialized
models (denoted SM), L denotes the number of layers, C the number of
convolutional units, and D the dimension of the dense layers.

Video
Name DD �di↵

SM
(L)

SM
(C)

SM
(D) clow chigh

taipei global 37.5 2 64 32 0.114 0.994
coral blocked 147.3 2 16 128 0.0061 0.998
amsterdam global 0.0019 2 64 256 0.128 0.998
night-street global 0.441 2 16 128 2.2e-7 0.176
store blocked 336.7 2 32 128 0.010 0.998
elevator global 0.0383 2 32 256 0.004 0.517
roundabout global 0.115 4 32 32 0.0741 0.855

9.3 Impact of the CBO
To better understand the source of speedups, we explored the im-

pact of NOSCOPE’s CBO on performance. We begin by showing that
the filter types and thresholds chosen by the CBO differ significantly
across videos based on the characteristics of their contents. We also
show that choosing other settings for these parameters would greatly
decrease speed or accuracy in many cases, so parameters cannot be
transferred across videos.

Configurations Chosen Across Datasets. Table 2 shows the differ-
ence detectors, specialized models, and detection thresholds chosen
by the CBO across our sample datasets for a 1% target false posi-
tive and false negative rate. We observe that these are substantially
different across videos, even when the CBO selects the same filter

Figure 5: Normalized performance of NOSCOPE with two different spe-
cialized NN models on the night-street and taipei videos. We see that
choosing a different NN architecture for each video, even though this archi-
tecture performed well on another dataset, reduces throughput. NOSCOPE
automatically selects the best-performing NN.

class (e.g., difference detection based on global MSE). We make a
few observations about these results:

First, the best type of MSE chosen depend on the video. For exam-
ple, coral and store are scenes with a dynamic background (e.g.,
coral shows an aquarium with colorful fish swimming in the back-
ground, and NOSCOPE is asked to detect people in the scene). In
these scenes, computing MSE against several frames past instead of
against a single “empty” reference frame is more effective.

Second, the chosen thresholds also differ significantly. For exam-
ple, taipei has a high difference detection threshold due to high
levels of small-scale activity in the background, but the target objects,
buses, are generally large and change more of the frame. The upper
and lower thresholds for NNs also vary even across the same target
object class, partly due to varying difficulty in detecting the objects in
different scenes. For example, in some videos, the clow threshold for
declaring that there is no object in a frame is extremely low because
increasing it would lead to too many false negatives.

Third, the best specialized model architectures also varied by video
and query. In particular, we found that in many videos, the larger
NNs (with 4 layers or with more convolutional units and dense layer
neurons) would overfit given the fairly small training set we used
(150,000 frames out of the 250,000 frames set aside for both train-
ing and evaluation). However, the best combination of the model
architecture parameters varied across videos, and NOSCOPE’s train-
ing routine that selects models based on an unseen evaluation set
automatically chose an accurate model that did not overfit.

Non-Transferability Across Datasets. As the best filter configu-
rations varied significantly across datasets, transferring parameters
from one dataset to another leads to poor performance:

Specialized Model Architectures. We used the specialized model
architecture from night-street (a NN with parameters L=2, C=16,
D=128) on the taipei dataset (whose optimal NN had L=2, C=64,
D=32), and vice-versa. We transferred only the architecture, not
the learned model from each dataset and trained a new model with
each architecture for the new dataset to evaluate its performance
there. Although these architectures have similar properties (e.g., two
layers), they required significantly different parameters to achieve
our 1% target false positive and false negative rates on each dataset.
This resulted in a 1.25⇥ to 3⇥ reduction in throughput for the overall
NOSCOPE pipeline, as depicted in Figure 5.

Detection Thresholds. We plotted the range of feasible thresholds
for the difference detector (�di↵ ), as well as the actual threshold
chosen, in Figure 6. Feasible thresholds here are the ones where the
system can stay within the 1% false positive and false negative rates
we had requested for the CBO. Beyond a certain upper limit, the
difference detector alone will introduce too many incorrect labels (on

Figure 6: Firing thresholds �di↵ chosen by the CBO for each video (blue
dots), along with the range of thresholds that can achieve 1% false positive
and false negative rate for that video (black lines).

Figure 7: Breakdown of training and optimization time on taipei dataset.
Passing all the training frames through YOLOv2 to obtain their true labels
dominates the cost, followed by training all variants of our specialized models
and then the rest of the steps in the CBO.

the validation set). As we see in the plot, the range of values for each
video is different and the best-performing threshold is often near the
top of this range, but not always. For example, coral is near the top,
but amsterdam is lower, this is due to the downstream performance of
the specialized models. Thus, attempting to use a common threshold
between videos would either result in failing to achieve the accuracy
target (if the threshold is too high) or lower performance than the
threshold NOSCOPE chose (if the threshold is too low).

9.3.1 Running Time of the CBO

We measured the time it takes to run our CBO across several
datasets, showing the most time-consuming one in Figure 7. In all
cases, initializing NOSCOPE requires labeling all the frames in the
training data with YOLOv2, followed by training all supported spe-
cialized models and difference detectors on this data, then selecting
a combination of them using the algorithm in Section 6. The CBO
is efficient in the number of samples required: only 250k samples are
required to train the individual filters and set the thresholds. For the
longer videos, we randomly sample from the training set and for the
shorter videos we use the first 250k frames. As shown in the figure,
YOLOv2 application takes longer than all the other steps combined,
meaning that NOSCOPE’s CBO could run in real time on a second
GPU while the system is first observing a new stream. Training of
the specialized NNs takes the next longest amount of time; in this
case, we trained 24 different model architectures. We have not yet
optimized this step or tried to reduce the search space of models, so
it may be possible to improve it.

9.4 Impact of Individual Models
To analyze the impact of each of our model types on NOSCOPE’s

performance, we ran a factor analysis and lesion study on two videos,
with results shown in Figures 8a and 8b.

(a) Factor analysis (b) Lesion study

Figure 8: Factor analysis and lesion study of NOSCOPE’s filters. The factor
analysis shows the impact of adding different filters for two videos; from
left to right, we add each of the filters in turn over YOLOv2. The lesion
study shows the impact of removing filters; the leftmost bars show normalized
performance with all of NOSCOPE’s features enabled, and the remaining bars
to the right show the effect of removing each filter from NOSCOPE. (Note the
logarithmic scale on the y-axes of both plots.)

Figure 9: Throughput, Generic NN vs. NOSCOPE. Substituting the special-
ized NN model in NOSCOPE with an equivalent model trained on MS-COCO
(a general-purpose training set of images used by YOLOv2) results in a
decrease in the end-to-end throughput of the system across all videos.

In the factor analysis, we started by running all frames through
YOLOv2 and gradually added: difference detection’s frame skip-
ping, difference detection on the skipped frames, and specialized
model evaluation. Each filter adds a nontrivial speedup: skipping
contributes up to 30⇥, content-based difference detection contributes
up to 3⇥, and specialized models contribute up to 340⇥.

In the lesion study, we remove one element at a time from the com-
plete NOSCOPE cascade. As shown in Figure 8b, each element con-
tributes to the overall throughput of the pipeline, showing that each
component of NOSCOPE’s cascades are important to its performance.

9.5 Impact of Model Specialization
Finally, we evaluate the benefit of video-specific model specializa-

tion compared to training on general computer vision datasets. Our
hypothesis in designing NOSCOPE was that we can achieve much
higher accuracy by training models on past frames from the same

video to leverage the characteristics of that particular scene (e.g., fixed
perspective on the target object, fixed background, etc.). To evaluate
this hypothesis, we trained three deep NNs for binary classification
on the classes of objects we evaluate NOSCOPE on: people, buses,
and cars using the more general MS-COCO dataset [62], a recent
high-quality object detection dataset. For each class, we selected
the best model from the same model family as NOSCOPE’s CBO.
Figure 9 shows the resulting throughput across our videos. In all
cases, the specialized models trained by NOSCOPE outperform the
generic model of the same size trained on MS-COCO (up to 20⇥),
showing that scene-specific specialization has a significant impact
on designing models for efficient inference.

9.6 Comparison Against Baselines
We also compared to classic methods in computer vision, including

a deformable parts model (which performed favorably in the Ima-

Factor AnalysisFigure 6: Firing thresholds �di↵ chosen by the CBO for each video (blue
dots), along with the range of thresholds that can achieve 1% false positive
and false negative rate for that video (black lines).

Figure 7: Breakdown of training and optimization time on taipei dataset.
Passing all the training frames through YOLOv2 to obtain their true labels
dominates the cost, followed by training all variants of our specialized models
and then the rest of the steps in the CBO.

the validation set). As we see in the plot, the range of values for each
video is different and the best-performing threshold is often near the
top of this range, but not always. For example, coral is near the top,
but amsterdam is lower, this is due to the downstream performance of
the specialized models. Thus, attempting to use a common threshold
between videos would either result in failing to achieve the accuracy
target (if the threshold is too high) or lower performance than the
threshold NOSCOPE chose (if the threshold is too low).

9.3.1 Running Time of the CBO

We measured the time it takes to run our CBO across several
datasets, showing the most time-consuming one in Figure 7. In all
cases, initializing NOSCOPE requires labeling all the frames in the
training data with YOLOv2, followed by training all supported spe-
cialized models and difference detectors on this data, then selecting
a combination of them using the algorithm in Section 6. The CBO
is efficient in the number of samples required: only 250k samples are
required to train the individual filters and set the thresholds. For the
longer videos, we randomly sample from the training set and for the
shorter videos we use the first 250k frames. As shown in the figure,
YOLOv2 application takes longer than all the other steps combined,
meaning that NOSCOPE’s CBO could run in real time on a second
GPU while the system is first observing a new stream. Training of
the specialized NNs takes the next longest amount of time; in this
case, we trained 24 different model architectures. We have not yet
optimized this step or tried to reduce the search space of models, so
it may be possible to improve it.

9.4 Impact of Individual Models
To analyze the impact of each of our model types on NOSCOPE’s

performance, we ran a factor analysis and lesion study on two videos,
with results shown in Figures 8a and 8b.

(a) Factor analysis (b) Lesion study

Figure 8: Factor analysis and lesion study of NOSCOPE’s filters. The factor
analysis shows the impact of adding different filters for two videos; from
left to right, we add each of the filters in turn over YOLOv2. The lesion
study shows the impact of removing filters; the leftmost bars show normalized
performance with all of NOSCOPE’s features enabled, and the remaining bars
to the right show the effect of removing each filter from NOSCOPE. (Note the
logarithmic scale on the y-axes of both plots.)

Figure 9: Throughput, Generic NN vs. NOSCOPE. Substituting the special-
ized NN model in NOSCOPE with an equivalent model trained on MS-COCO
(a general-purpose training set of images used by YOLOv2) results in a
decrease in the end-to-end throughput of the system across all videos.

In the factor analysis, we started by running all frames through
YOLOv2 and gradually added: difference detection’s frame skip-
ping, difference detection on the skipped frames, and specialized
model evaluation. Each filter adds a nontrivial speedup: skipping
contributes up to 30⇥, content-based difference detection contributes
up to 3⇥, and specialized models contribute up to 340⇥.

In the lesion study, we remove one element at a time from the com-
plete NOSCOPE cascade. As shown in Figure 8b, each element con-
tributes to the overall throughput of the pipeline, showing that each
component of NOSCOPE’s cascades are important to its performance.

9.5 Impact of Model Specialization
Finally, we evaluate the benefit of video-specific model specializa-

tion compared to training on general computer vision datasets. Our
hypothesis in designing NOSCOPE was that we can achieve much
higher accuracy by training models on past frames from the same

video to leverage the characteristics of that particular scene (e.g., fixed
perspective on the target object, fixed background, etc.). To evaluate
this hypothesis, we trained three deep NNs for binary classification
on the classes of objects we evaluate NOSCOPE on: people, buses,
and cars using the more general MS-COCO dataset [62], a recent
high-quality object detection dataset. For each class, we selected
the best model from the same model family as NOSCOPE’s CBO.
Figure 9 shows the resulting throughput across our videos. In all
cases, the specialized models trained by NOSCOPE outperform the
generic model of the same size trained on MS-COCO (up to 20⇥),
showing that scene-specific specialization has a significant impact
on designing models for efficient inference.

9.6 Comparison Against Baselines
We also compared to classic methods in computer vision, including

a deformable parts model (which performed favorably in the Ima-

* Noscope actually performs a simpler classification task on a pre-cropped region of the viewport 
(not detection, which involves object location)
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More aggressive distillation
▪ Specialize to instant in time (requires constant model retraining)

250 ms/frame *
15 ms/frame

Expensive Model (Mask R-CNN)Specialized Model (specialized to scene, 
camera viewpoint, and window of time)

* Mask R-CNN is performing instance segmentation, specialized model is only performing 
segmentation (mask r-CNN is performing a slightly more complex task)
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Class thought experiment
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Setup
▪ Many cameras (e.g., traffic cameras in a major US city, cameras in future Amazon Go stores) 

▪ Many applications needing access to streams for different tasks

Datacenter

Application

Application

Application

Application

…

…
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Trick 4: share processing across multiple 
tasks on the same stream

(Recall how sharing led to speedup across boxes in Mask R-CNN)
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Sharing computation across tasks
▪ System design forces different networks to share the same trunk 
▪ Amortize cost of early (and expensive layers) across different tasks 
▪ Tough question: given N tasks, how much of DNN should be shared among tasks?

Generic Network
All Parameters Shared

Specific Network
No Parameters Shared

Reducing sharing between tasks 

Shared Layers
Task A layers
Task B layers

-5.7

-2.2
-1.2 -0.8 -1 -0.4

0.1

-0.16

0.69

-0.06 -0.09

0.37 0.24

-0.34

Attributes Classification (mAP) Object Detection (mAP)

0.85
0.52 0.65

0.28
0.65 0.52

0.85

-0.4

0.11

-0.62

0.22
0.8

-0.28

-1.32

Surface Normal (Median Error) Semantic Segmentation (mean IU)

Difference 
between 

Split 
Network 

and Specific 
Network

(Ss𝑝𝑙𝑖𝑡 − Sspecific)

Split fc8 Split fc7 Split fc6 Split conv5 Split conv4 Split conv3 Split conv2

(a)

(b)

Figure 2: We train a variety of multi-task (two-task) architectures by splitting at different layers in a ConvNet [32] for two
pairs of tasks. For each of these networks, we plot their performance on each task relative to the task-specific network. We
notice that the best performing multi-task architecture depends on the individual tasks and does not transfer across different
pairs of tasks.

So given a pair of tasks, how should one pick a network
architecture? To empirically study this question, we pick
two varied pairs of tasks:

• We first pair semantic segmentation (SemSeg) and sur-
face normal prediction (SN). We believe the two tasks are
closely related to each other since segmentation bound-
aries also correspond to surface normal boundaries. For
this pair of tasks, we use NYU-v2 [47] dataset.

• For our second pair of tasks we use detection (Det) and
Attribute prediction (Attr). Again we believe that two
tasks are related: for example, a box labeled as “car”
would also be a positive example of “has wheel” at-
tribute. For this experiment, we use the attribute PAS-
CAL dataset [12, 16].

We exhaustively enumerate all the possible Split archi-
tectures as shown in Figure 2(a) for these two pairs of tasks
and show their respective performance in Figure 2(b). The
best performance for both the SemSeg and SN tasks is using
the “Split conv4” architecture (splitting at conv4), while
for the Det task it is using the Split conv2, and for Attr with
Split fc6. These results indicate two things – 1) Networks
learned in a multi-task fashion have an edge over networks
trained with one task; and 2) The best Split architecture for
multi-task learning depends on the tasks at hand.

While the gain from multi-task learning is encouraging,
getting the most out of it is still cumbersome in practice.
This is largely due to the task dependent nature of picking
architectures and the lack of a principled way of exploring

them. Additionally, enumerating all possible architectures
for each set of tasks is impractical. This paper proposes
cross-stitch units, using which a single network can capture
all these Split-architectures (and more). It automatically
learns an optimal combination of shared and task-specific
representations. We demonstrate that such a cross-stitched
network can achieve better performance than the networks
found by brute-force enumeration and search.

2. Related Work

Generic Multi-task learning [5, 48] has a rich history in
machine learning. The term multi-task learning (MTL) it-
self has been broadly used [2, 14, 28, 42, 54, 55] as an
umbrella term to include representation learning and se-
lection [4, 13, 31, 37], transfer learning [39, 41, 56] etc.
and their widespread applications in other fields, such as
genomics [38], natural language processing [7, 8, 35] and
computer vision [3, 10, 30, 31, 40, 51, 53, 58]. In fact, many
times multi-task learning is implicitly used without refer-
ence; a good example being fine-tuning or transfer learn-
ing [41], now a mainstay in computer vision, can be viewed
as sequential multi-task learning [5]. Given the broad scope,
in this section we focus only on multi-task learning in the
context of ConvNets used in computer vision.

Multi-task learning is generally used with ConvNets in
computer vision to model related tasks jointly, e.g. pose es-
timation and action recognition [22], surface normals and
edge labels [52], face landmark detection and face de-
tection [57, 59], auxiliary tasks in detection [21], related

tuned to segmentation as shown in 4.1, and even score
highly on the standard metric, their output is dissatisfyingly
coarse (see Figure 4). The 32 pixel stride at the final predic-
tion layer limits the scale of detail in the upsampled output.

We address this by adding skips [1] that combine the
final prediction layer with lower layers with finer strides.
This turns a line topology into a DAG, with edges that skip
ahead from lower layers to higher ones (Figure 3). As they
see fewer pixels, the finer scale predictions should need
fewer layers, so it makes sense to make them from shallower
net outputs. Combining fine layers and coarse layers lets the
model make local predictions that respect global structure.
By analogy to the jet of Koenderick and van Doorn [21], we
call our nonlinear feature hierarchy the deep jet.

We first divide the output stride in half by predicting
from a 16 pixel stride layer. We add a 1 ⇥ 1 convolution
layer on top of pool4 to produce additional class predic-
tions. We fuse this output with the predictions computed
on top of conv7 (convolutionalized fc7) at stride 32 by
adding a 2⇥ upsampling layer and summing6 both predic-
tions (see Figure 3). We initialize the 2⇥ upsampling to bi-
linear interpolation, but allow the parameters to be learned
as described in Section 3.3. Finally, the stride 16 predic-
tions are upsampled back to the image. We call this net
FCN-16s. FCN-16s is learned end-to-end, initialized with
the parameters of the last, coarser net, which we now call
FCN-32s. The new parameters acting on pool4 are zero-
initialized so that the net starts with unmodified predictions.
The learning rate is decreased by a factor of 100.

Learning this skip net improves performance on the val-
idation set by 3.0 mean IU to 62.4. Figure 4 shows im-
provement in the fine structure of the output. We compared
this fusion with learning only from the pool4 layer, which
resulted in poor performance, and simply decreasing the
learning rate without adding the skip, which resulted in an
insignificant performance improvement without improving
the quality of the output.

We continue in this fashion by fusing predictions from
pool3 with a 2⇥ upsampling of predictions fused from
pool4 and conv7, building the net FCN-8s. We obtain
a minor additional improvement to 62.7 mean IU, and find
a slight improvement in the smoothness and detail of our
output. At this point our fusion improvements have met di-
minishing returns, both with respect to the IU metric which
emphasizes large-scale correctness, and also in terms of the
improvement visible e.g. in Figure 4, so we do not continue
fusing even lower layers.

Refinement by other means Decreasing the stride of
pooling layers is the most straightforward way to obtain
finer predictions. However, doing so is problematic for our
VGG16-based net. Setting the pool5 stride to 1 requires
our convolutionalized fc6 to have kernel size 14 ⇥ 14 to

6Max fusion made learning difficult due to gradient switching.

FCN-32s FCN-16s FCN-8s Ground truth

Figure 4. Refining fully convolutional nets by fusing information
from layers with different strides improves segmentation detail.
The first three images show the output from our 32, 16, and 8
pixel stride nets (see Figure 3).

Table 2. Comparison of skip FCNs on a subset7 of PASCAL VOC
2011 segval. Learning is end-to-end, except for FCN-32s-fixed,
where only the last layer is fine-tuned. Note that FCN-32s is FCN-
VGG16, renamed to highlight stride.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-32s-fixed 83.0 59.7 45.4 72.0
FCN-32s 89.1 73.3 59.4 81.4
FCN-16s 90.0 75.7 62.4 83.0
FCN-8s 90.3 75.9 62.7 83.2

maintain its receptive field size. In addition to their com-
putational cost, we had difficulty learning such large filters.
We attempted to re-architect the layers above pool5 with
smaller filters, but did not achieve comparable performance;
one possible explanation is that the ILSVRC initialization
of the upper layers is important.

Another way to obtain finer predictions is to use the shift-
and-stitch trick described in Section 3.2. In limited exper-
iments, we found the cost to improvement ratio from this
method to be worse than layer fusion.

4.3. Experimental framework

Optimization We train by SGD with momentum. We
use a minibatch size of 20 images and fixed learning rates of
10�3, 10�4, and 5�5 for FCN-AlexNet, FCN-VGG16, and
FCN-GoogLeNet, respectively, chosen by line search. We
use momentum 0.9, weight decay of 5�4 or 2�4, and dou-
bled learning rate for biases, although we found training to
be sensitive to the learning rate alone. We zero-initialize the
class scoring layer, as random initialization yielded neither
better performance nor faster convergence. Dropout was in-
cluded where used in the original classifier nets.

Fine-tuning We fine-tune all layers by back-
propagation through the whole net. Fine-tuning the
output classifier alone yields only 70% of the full fine-
tuning performance as compared in Table 2. Training from
scratch is not feasible considering the time required to
learn the base classification nets. (Note that the VGG net is
trained in stages, while we initialize from the full 16-layer

Semantic Segmentation Normal estimation

[Image from:  Misra et al. CVPR 2016]



Stanford CS348K, Fall 2018

Emerging interest in systems that learn how to 
share computation across users

[Jiang 18]

(ResNet layers)

Less accurate per frame behavior can yield more confident 
event detection due to ability to sample event more times.
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Summary
▪ An increasing number of cameras across world will be capturing near 

continuous video 

▪ Many applications will seek to extract value from these data streams 
- Implications for efficiency of cities (transportation, infrastructure 

monitoring), brick-and-mortar commerce, security, health-care, 
robotics, human-robot interactions, autonomous vehicles 

▪ Need significant efficient gains to process this worldwide visual signal 
- Hardware specialization 
- Algorithmic techniques to reduce the cost of inference 

- Specialization to video stream or scene context 
- Exploit temporal coherence of video
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Discussion: privacy 
and ethics

Image credit: 
The Circle (movie)


