Lecture 12:

Optimizations for
Processing Video

Visual Computing Systems
Stanford C5348K, Fall 2018



Video processing applications
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Thought experiment

Imagine we wanted to detect people/cars/bikes in a video stream
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Thought experiment

Imagine we wanted to detect people/cars/bikes in a video stream
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Object detection performance

600x600 input images (not particularly large)

COCO-trained models {#coco-models}

Model name Speed (ms) COCO mAP["] Outputs
ssd_mobilenet_v1_coco 30 21 Boxes
ssd_inception_v2_coco 42 24 Boxes
faster_rcnn_inception_v2_coco 58 28 Boxes
faster_rcnn_resnet50_coco 89 30 Boxes
faster_rcnn_resnet50_lowproposals_coco 64 Boxes
rfcn_resnet101_coco 92 30 Boxes
faster_rcnn_resnet101_coco 106 32 Boxes
faster_rcnn_resnet101_lowproposals_coco 82 Boxes
faster_rcnn_inception_resnet_v2_atrous_coco 620 37 Boxes
faster_rcnn_inception_resnet_v2_atrous_lowproposals_coco 241 Boxes
faster_rcnn_nas 1833 43 Boxes
faster_rcnn_nas_lowproposals_coco 540 Boxes

[Credit: Tensorflow detection model zoo]
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Aside:
optimizing object detectionina
single image




VGG-16 image classification network

[Simonyan 2015]
Input:
fixed size i
xed size image Output:
probability of label
(for 1000 class labels)
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12 r I X512

) : ‘ X DL v, 1x1x4096 1x1x1000

%
| | —

ﬂ convolution+ReLU

f 1 max pooling

fully connected+RelLU

| softmax

Network assigns input image one of 1000 potential labels.
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Using classification network as a “subroutine
for object detection

[Girshick 2014]

Search over all regions of the image and all region sizes for objects
(“Sliding window” over image, repeated for multiple potential object scales)

for all region top-left positions (x,y):
for all region sizes (w,h):

cropped = 1mage_crop(image, bbox(x,y,w,h))

resized = i1mage_resize(227,227)

label = detect_object(resized)

1f (label !'= background)
// region defined by bbox(x,y,w,h) contains object
// of class ‘label’
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Optimization 1: filter detection work via object proposals

Selective search [Uijlings LJCV 2013]

Input: image
Output: list of regions (various scales) that are likely to contain objects

Idea: proposal algorithm filters parts of the image not likely to contain objects
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Object detection pipeline executed only on

proposed regions

[Girshick 2014]

Inputimage:
(of any size)

/|

Object

) Proposal
generator

List of proposed
regions (~2000)

»@»

Crop/
Resample

for each proposed region

Pixel region
(of canonical size)

S

=

Classification object

DNN

=»> label
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Object detection performance on Pascal VOC

Example training data

lanes

airp

ow

VOC 2010 test | acro bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv | mAP
DPM v5 [18]7 |49.2 53.8 13.1 153 355 534 49.7 27.0 17.2 28.8 147 17.8 464 512 477 108 342 20.7 43.8 383|334
UVA [34] 56.2 424 153 12.6 21.8 493 36.8 46.1 129 32.1 30.0 36.5 435 529 329 153 41.1 31.8 47.0 44.8| 35.1
Regionlets [36] | 65.0 48.9 259 24.6 245 56.1 545 51.2 17.0 289 30.2 358 40.2 557 435 143 439 32.6 54.0 459 39.7
SegDPM [16]T |61.4 53.4 256 252 355 51.7 50.6 50.8 19.3 33.8 26.8 404 483 544 47.1 148 387 350 52.8 43.1|404
R-CNN 67.1 64.1 46.7 32.0 30.5 564 572 659 27.0 473 409 66.6 57.8 659 53.6 26.7 565 38.1 528 50.2| 50.2

DNN weights “pre-trained” using object classification on ImageNet (lots of data, different task)
DNN weights “fine-tuned” for the 20 VOC categories + 1 “background” category (task-specific data)
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Optimization 2: region of interest pooling

RGB input image:
(of any size) “Fully convolutional network”:
/ sequence of convolutions and pooling steps: output size is dependent on input size

convlayer/

maxpool ROI pool

e 2 > —

4 /

HxWx(

14

HEEEEEEENENENEN
. SEmssmmmmEEEas
|dea: the output of early co.nvolutloqal I.ayers of I T 2 ROl pool
network on downsampled input region is IO O O 0 L O I
approximated by resampling output of fully- ========= Eﬁﬁﬂ =
convolutional implementation of conv layers. i
Performance optimization: can evaluate ROJpcS

convolutional layers once on large input, then reuse
intermediate output many times to approximate
response of a subregion of image.
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Optimization 2: region of interest pooling

This is a form of “approximate common subexpression elimination”

for all proposed regions (x,y,w,h):
cropped = image_crop(image, bbox(x,y,w,h))
resized = i1mage _resize(227,227) ,
redundant work (many regions

label = detect_object(resized) «— overlap, so responses at lower
network layers are computed

l many times

_ computed once perimage
conv5_response = evaluate_conv_layers(1image) o

for all proposed regions (x,y,w,h):
region_conv5 = roi_pool(conv5 _response, bbox(x,y,w,h))
label = evaluate_fully_connected_layers(region_conv5)
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Fast R-CNN pipeline wisviccos:

Input image: List of proposed for each proposed region
(OfaHYSiZE) regions (~2000) prop g
Obiect class-label
1 ij osal ——H— Iﬁl Pixel region softmax
> enzrator = Iii!l N (of canonical size) *object
| ROI Fll"y- label
7 pooling layer =» = co:mected
: ’ ayers
~ DNN =) bbox
(conv layers only!) -»>
bbox
/ 1%
regression
Response maps softmax

Evaluation speed: 146x faster than R-CNN (47sec/img —0.32 sec/img)
[This number excludes cost of proposals]

Training speed: 9x faster than R-CNN

Training mini-batch: pick N images, pick 128/N boxes from each image (allows sharing of conv-layer
pre-computation for multiple image-box training samples)

Simultaneously train class predictions and bhox predictions: joint loss = class label loss + bhox loss
Note: training updates weights in BOTH fully connected/softmax layers AND conv layers

method train set | aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv | mAP
R-CNN BB [10] |12 79.3 724 63.1 440 444 646 663 849 388 673 484 823 750 7677 657 358 662 548 69.1 58.8 | 62.9
FRCN [ours] 12 80.1 744 67.7 494 414 742 688 87.8 419 70.1 50.2 86.1 77.3 81.1 704 333 67.0 633 77.2 60.0| 66.1
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Problem: bottleneck is now generating proposals

Selective search [Uijlings 13] ~ 10 sec/image on (PU
EdgeBoxes [Zitnick 14] ~ 0.2 sec/image on CPU

Input im?ge: List of proposed for each proposed region
(of any size) regions (~2000)
: class-label
/| Object Pixel region softmax
1 Proposal = - (of canonical size) object
generator Il 201 Fully- »Iabel
pooling layer =»> = co:meecried
/] , a
\ DNN D ’ mp bbox
(conv layers only!)
_./ bbox
/ regression
Response maps softmax

Idea: why not predict regions from the convolutional feature maps that must be
computed for detection anyway? (share computation between proposals and detection)
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Faster R-CNN using a region proposal network (RPN)

[Ren 2015]

Input image:
(of any size)

/|

DNN

-»> (conv layers only!) -»>

List of proposed
regions for each proposed
Region proposal = ﬁl region
network _ 2 j!l \
7 o I []
| ROI
pooling layer ~
V
Response maps
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Faster R-CNN using a region proposal network (RPN)

512 3x3 conv filters
(3x3x512x5|12 weights)
Input |m?ge: : 1x1 conv
(of any size) ' (2-way softmax)
/ ; 512 x (9%*2) weights
77 objectness score
DNN »> (for 9 boxes)
> (conv layers only!) > >
1% > bbox offset
Response maps (for 9 boxes)
/ WxHx512 1x1 conv
(bbox regressor)
512 x (9x4) weights
o . scores coordinates <7 k anchor boxes
3x3 conv projects into 512-element vector per — - e coordinat 1
spatial position (assuming VGG input conv layers, ' \ f o
receptive field for each output is ~228x228 pixels) 256.d

t intermediate layer

At each point assume 9 “anchor boxes” of various

aspect ratios and scales E

Given 512-element vector predict “objectness score” sliding window
of each anchor + bbox correction to anchor conv feature. map
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Training faster R-CNN

512 3x3 conv filters
(3x3x512x512 weights)

; 1x1 conv
. (2-way softmax)
' 512x(9*2) weights List of proposed
\ 4 :

Input image: > objectness score regions

(of any size) (for 9 boxes) E- i Iﬁl

/] s
77 bbox offset
DNN ~ ™ (for 9 boxes)
= (conv layers) =»> 1x1 conv
(bbox regressor)
/ 512 x (9x4) weights
Response maps
WxHx512 for each proposed region
_./ Pixel region class-label softmax
(of canonical size) »object
pooling layer =»> =»> co:mected
. . ayers
Goal: want to jointly learn y mp bbox
- Region prediction network weights
. . . . bb ’
- Object classification network weights °;‘orfi?,',r§f(s'°"

- While constraining initial conv layers to be the same (for efficiency) Stanford CS348K. Fall 2013



Alternating training strategy

Train region proposal network (RPN)

Using loss based on ground-truth object bounding boxes

Positive example: intersection over union with ground truth box is above threshold

Negative example: intersection over union is less than threshold

Then use trained RPN to train Fast R-CNN

Using loss based on detections and bbox regression

Use conv layers from R-CNN to initialize RPN
Fine-tune RPN

Using loss based on ground-truth boxes

Use updated RPN to fine tune Fast R-CNN

Using loss based on detections and bbox regression

Repeat...

Notice: solution learns to predict boxes that are “good for object-detection task”
- “End-to-end” optimization for object-detection task

Compare to using off-the-shelf object-proposal algorithm
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Faster R-CNN results

Specializing region proposals for object-detection task yields better accuracy.
$S = selective search for object proposals

method # proposa]s data mAP (%)
SS 2000 12 65.7
SS 2000 07++12 68.4
RPN+VGG, shared! 300 12 67.0
RPN+VGG, shared* 300 07++12 70.4

Shared convolutions improve algorithm performance:

Values are times in ms

model system conv proposal region-wise total rate
VGG SS + Fast R-CNN 146 1510 174 1830 0.5 fps
VGG RPN + Fast R-CNN 141 10 47 198 5 fps
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Summary

m Knowledge of algorithm and properties of DNN used to gain
algorithmic speedups

- Not just “modify the schedule of the loops”

m  Key insight: sharing results of convolutional layer computations:

- Between different proposed regions (proposed object bhoxes)

- Between region proposal logic and detection logic

m Example of “end-to-end” training

- Back-propagate through entire algorithm to train all components at once

- Better accuracy: globally optimize the various parts of the algorithm to be optimal

for given task (Faster R-CNN: how to propose boxes learned simultaneously with
detection logic)

- (Can constrain learning to preserve performance characteristics (Faster R-CNN: conv
layer weights shared across RPN and detection task)
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Mask RCNN

m  Extend Faster R-CNN to also emit a segmentation per box
- Previously: box and class emitted in parallel
- Now: box, class, and segmentation emitted in parallel

Pixel region of canonical size (7x7)
Output of resampling the region generated by
the Faster R-CNN region proposal network

ROI /
pooling layer wp x?(;; 4
(ROIAlign)

7

ress

e

/X7
%2048

7

ave

Faster R-CNN

w/ ResNet [19]
class
2048
box

e

14%x14
X256

7

d

14%x14
X80

@

per-class scores (80)

bbox adjustments

binary masks for 80
output classes
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Mask R-CNN for human pose

m  Loss based on bitmapped with hot pixels at joint keypoint locations rather than
segmentation masks
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An alternative approach to object detection

Recall structure of algorithms so far: (reduce detection to classification)

for all proposed regions (x,y,w,h):
cropped = image_crop(image, bbox(x,y,w,h))
resized = i1mage_resize(classifier_width,classifier_height)
label = classify object(resized)
bbox_adjustment = adjust_bbox(resized)

New approach to detection:

for each level 1l of network:
for each (x,y) position 1in output:
use region around (1,x,y) to directly predict which anchor boxes
centered at (x,y) are valid and class score for that box

If there are B anchor boxes and C classes, then...
At each (1,x,y), prediction network has B x (C + 4) outputs

For each anchor B, there are C class probabilities + 4 values to adjust the anchor box
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SSD: Single shot multi box detector

multibox detectors operating on If feature maps have P channels (e.qg., P=512 and 256 below)
different scales of features Each dlassifier is a 3x3xP filter

(C + 4) filters for one anchor bbox

(assume one of the C categories is “background”)

Extra Feature Layers

VGG-16 A

Classifier : Conv: 3 x(4x(0®&
W Conv: 3x3x(6x(Classes+4))

Conv: 3x3x(4x(Classes+4))
Conv11_2
256 256 256

—
Conv: 3x3x1024 Conv: 1x1x1024 Conv: 1x1x256 Conv: 1x1x128 Conv: 1x1x128 Conv: 1x1x128
Conv: 3x3x512-s2 Conv: 3x3x256-s2 Conv: 3x3x256-s1 Conv: 3x3x256-s1

74.3mAP
S9FPS

SSD

% c
G S
-~ (7))
ol |g
| -
o ol
S
- n
= =
7 -]
- =
ie) c>é
e
o =S
e 1
e S
()
prd

Deep feature hierarchy of fully convolutional layers

Note: diagram shows only the feature maps Stanford C5348K, Fall 2018



SSD anchor boxes

I

iy et LR

L1 g I

Il P, LT P N

|_|L___I_|" by | I

I|:||I|| "||___II'|

o af I i,

=S [TaF S QI Epp——
_L_—_—T—| L{ — —[I | 4 — — — - 1,
'_:Ir—|l|: A !

'Ll-r——+|-| */
== loc: A(cx, cy,w, h)
conf : (ci, ¢, ¢p)

(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map

Anchor boxes at each feature map level are of different sizes
Intuition: receptive field of cells at higher levels of the network (lower resolution

feature maps) is a larger fraction of the image, have information to make
predictions for larger boxes
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Object detection performance

600x600 input images

COCO-trained models {#coco-models}

Model name Speed (ms) COCO mAP["] Outputs
ssd_mobilenet_v1_coco 30 21 Boxes
ssd_inception_v2_coco 42 24 Boxes
faster_rcnn_inception_v2_coco 58 28 Boxes
faster_rcnn_resnet50_coco 89 30 Boxes
faster_rcnn_resnet50_lowproposals_coco 64 Boxes
rfcn_resnet101_coco 92 30 Boxes
faster_rcnn_resnet101_coco 106 32 Boxes
faster_rcnn_resnet101_lowproposals_coco 82 Boxes
faster_rcnn_inception_resnet_v2_atrous_coco 620 37 Boxes
faster_rcnn_inception_resnet_v2_atrous_lowproposals_coco 241 Boxes
faster_rcnn_nas 1833 43 Boxes
faster_rcnn_nas_lowproposals_coco 540 Boxes

[Credit: Tensorflow detection model zoo]
Stanford (S348K, Fall 2018



Back to video
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Interest in processing video efficiently

m  Benefits to datacenter applications:

- Lower cost/frame enables processing of more streams (e.g., thousands
of webcams)

m  Benefits to edge devices:

= Cheaper per frame costs, real-time performance on cheaper/lower
energy computing hardware

- Lower latency per frame

- Example: automated breaking systems target ~40ms sense to brake
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Thought experiment

Imagine we wanted to detect people/cars/bikes in a video stream
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Trick 0: video stream subsampling

m Spatial downsampling: run detector on low-resolution image
B Temporal subsampling: run detector at low frame rate
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Trick 1: exploit temporal coherence
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Temporal differencing

B |dea: use labels from empty frame image if similar to background
image

(a) empty frame (b) frame with a car (¢) subtracted frames

B |dea: use same result as previous frame if two frames are
sufficiently similar

- How to define sufficiently similar? (thresholds)?
- Differences in feature space more robust than over pixels
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Tracking

Evaluate expensive detector sparsely in time (e.g., every 1/2 second), then use more efficient
tracking algorithm to update annotations over sequence of frames

N e e L S P | ot (P et LLE ] P T =2 e = =
v ‘ W “‘: 1 - ol 1 ‘c’. R 4 |4£ J X

s
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Tracking

Evaluate expensive detector sparsely in time (e.g., every 1/2 second), then use more efficient




[Zhu CVPR 2017]

Leveraging motion in the network

key frame result current frame result

Key idea: given features (or final
segmentation result from prior frame)
use flow between prior and current
frame to advect features (or

segmentation) to new frame.
N task : N task
propagation

In other words: it’s easier to produce the
result for the current frame if you have
the result from the prior frame

!:- = 1
' o

' " | N |

| ]

=~

current frame
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[Zhu CVPR 2017]

Leveraging motion in the network

o
™

l| "-f—"a;L-'

filter #183 ra filter #289

filter #289

current frame current frame feature maps

. : _ filter #183 N Giter #289

flow field propagated feature maps

In practice: despite “intellectual appeal” of advecting features, paper results show advecting

segmentation is as QOOd as advectmg features. Stanford CS348K, Fall 2018



Trick 2: exploit temporal coherence at
different scales
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A fully convolutional network for image segmentation

224x224 224x224
12x112  Convolution network Upsampling network 112x11
’ 56x56 56x56
2828 14x14 28x%28
/ X - o 14x14
1x1 1x1
o £ P ¢ P
Max M%)élin Unpooling
o ax pooling g g _____________ - _ Unpooling _/_/_/_/
AN p%é ing Pooling e - B — \Linpooling _/_/_/
ax e T Unpoolin
/ )goollng --------- — P g AN
..... - ~npooling
N 4 \
32x upsampled

image convl pooll convZz pool2 conv3 pool3 conv4 pool4 convo poold conve-7 prediction (FCN-32s)

. - 16x upsampled
S C—_ prediction (FCN-16s)
FCN-32s FCN-16s FCN-8s Ground truth 8x u pled
4x conv7 prediction (FCN-8s)
2x poold
pool3
——

|
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Difference

0.30

0.25¢

0.20}

0.15 |

0.10+

0.05}

0.00
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Frame Number
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0.30

0.25}

0.20+

0.15¢

0.10}

0.05}

0.00

L, T

— fc7 |
— pool4 ||

10 20 30 40

Frame Number

50
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Observation:
Deeper features feature more
temporal stability

(more “semantic” information
changes less rapidly in a scene)

[Shelhamer ECCV16]
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Clockwork network: reuse deeper layer
outputs in subsequent frames

Stage 1 Stage 2 Stage 3
| I I Frame Timing of FCN-8s
Clock 1 Clock 2 Clock 3 [EStage 1 (60.0ms)
@I_ el >@T-_;@1 [CIStage 2 (18.7ms)
1

X | onv I ! 7 [ Stage 3 (23.0ms)

T Conv2 L L

| ! Conv3 , Conv4 1 Convbd

! L L fc6  fc7 Deconv —» standard

L I Ly ! L Score 2x

: : : - == clockwork

: > > : : > > > > Deconv

Fuse 2x
_>
4096 4096
384 384 384 Score > i Deconv
256 Fuse 8x
96 Score —>
_>
> |—>

Evaluate lower (early) layers each frame
Optionally combine (fresh) output of lower layers with output of higher layers from previous frames.

[Shelhamer ECCV16] Stanford CS348K, Fall 2018



Clockwork convnet

m Reduced latency: generate output only after evaluating first layer

.

$

QH»H_’H
QH»H_»H
AH_’H_’H

frame 1

frame 2

frame 3

frame 4
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Clockwork convnet

® [ncrease throughput: update higher layers at a lower rate

- ‘
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Another example: parallel video networks

(Optional)
[y1,Y2,Yz.ys] y1

Vo
XX I X3X X4
T ’t ::,::;oe _’—’ smgpg?lj — n gl(?ck v :dg:’j%lz
fr Jo fs fa s fo fr fs o fo

Non-pipelined execution [

2x3x3
MiniBlock

y4 ya
|

yoyyayayd ? ﬁ
l X8

2 2x2 2 3 3

1X3x3 Avx M2 gloack } gF’ool J

d A
l striae
Pose
heatmaps
| Densel ted lelEI
N eores N )
i fo fs fo fs fo fr fs fol
No skips With skips |

(increases parallelism) (reduces latency) [Carriera et al. 2018]
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Trick 3: specialize to content

(specialization to video content can be viewed as a form of exploiting
temporal coherence, why?)

Stanford (S348K, Fall 2018



Model specialization

B Common principle in DNN design/training is to learn most general model
(via large datasets, reqularization, etc.) to perform well across all instances
of a task

B But many cameras see a very specific distribution of images
- Only certain types of object classes
- Always from the same/similar viewpoint

- Objects appear in same regions of screen

B Specialization has been a major theme in this class w.r.t hardware design.
Now we wish to specialize models to the contents of a video stream

- “Amodel can be must simpler if it only needs to work for a single
camera”

Stanford (S348K, Fall 2018



Model distillation

m Accurate, but expensive, model: trained on full training set

[Hinton 15]

- ”The teaCher” 224x 224 X3 224 X 224 x 64

m Smaller model (cheaper), trained to mimic the output of the teacher
- “The student”

-

Stanford (S348K, Fall 2018



Noscope Kang 17

m  Apply model distillation, but constrain training set to a specific video feed:
Given an expensive network that performs a specified detection* task well on
a wide range of videos, distill a highly optimized implementation for this
video stream

m  Example: binary classification task on a single class, in an traffic camera video
stream

* Noscope actually performs a simpler classification task on a pre-cropped region of the viewport

(not detection, which involves object location)
Stanford (S348K, Fall 2018



Three Noscope optimizations

B Statically specialize model to video feed
- Teacher network: Yolo object detection network
- Student network: compact specialized network (2-4 conv layers)
- Low cost student “learns” to mimic the teacher

B Dynamic: utilize frame-to-frame difference detectors with learned thresholds
- “Same as background”, “same as previous frame”

- Learn thresholds for how often to check for differences (in frames), and
what the magnitude of a meaningful difference is

B Dynamic: cascades

- Run cheap specialized model (student) on frame first, then run teacher
model if student does not make a confident prediction

Stanford (S348K, Fall 2018



Noscope results *

1.0 ¢ ] 1.04 s .‘.ﬁT_
| : 1 elevator I roundabout
© | © ! — L]
< < 3
L
1 ]
0.8 0.8 s 10
1x 100x 104X 1x 100x 104X =
Speedup Speedup = 10-1 - —l
(a) taipei (b) coral J & & O
1.0 — ) 1.0 O\/O xo\,\;\Q\ XO\\(\O\ gQQ’
| < \& @6 x
> >
: : v
5 0.9 5 0.9 Factor Analysis
O @)
< <
0.8 0.8
1x 100x 1O4X 1x 100x 1O4X
Speedup Speedup
(¢) amsterdam (d) night-street
1.0+ 1.0 4 o
> P —
& &
5 0.9 5 0.9
@) ®)
O O
< \\’ <
0.8 0.8
1x 100x 1O4X 1X 100x 104X
Speedup Speedup
(e) store (f) elevator

* Noscope actually performs a simpler dlassification task on a pre-cropped region of the viewport
(not detection, which involves object location) Stanford (S348K, Fall 2018



More aggressive distillation

B Specialize to instant in time (requires constant model retraining)

Specialized Model (specialized to scene, Expensive Model (Mask R-CNN)
camera viewpoint, and window of time) 250 ms/frame *

15 ms/frame

* Mask R-CNN is performing instance segmentation, specialized model is only performing

segmentation (mask r-CNN is performing a slightly more complex task) Stanford (343K Fall 2018



Class thought experiment

Click to open expanded view

AWS DeepLens - Deep learning enabled video
camera for developers

Amazon Web Services

Price: $249.00 FREE Shipping for Prime members

This item will be released on June 14, 2018.

Pre-order now.
Ships from and sold by Amazon.com.

Deep learning in your hands - A fully programmable video camera designed to
expand deep learning skills.

» Start learning right away - Learn the basics of deep learning through example
projects, computer vision models, tutorials, and real world, hands-on
exploration on a physical device.

A new way to learn machine learning - Allows developers of all skill levels get
started with deep learning in less than 10 minutes.

-~ Sample projects - AWS DeeplLens can run custom models from Amazon
SageMaker, and comes with a collection of pre-trained models ready to run on
the device with a single click.

Fully programmable - Easy to customize and is fully programmable using AWS
Lambda providing a familiar programming environment for developers to
experiment with.

Integrated with AWS - Stream video back to AWS using Amazon Kinesis Video
Streams, and apply more advanced video analytics using Amazon Rekognition
Video. The device also connects securely to AWS loT, Amazon SQS, Amazon
SNS, Amazon S3, Amazon DynamoDB, and more.

share M I3 ®

‘ Pre-order: Add to Cart |

or 1-Click Checkout

I ‘b Pre-order with 1-Click |

Not yet released
Free shipping once released
Ship to:
Kayvon Fatahalian- PALO ALTO

<>

Add to List
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Setup

B Many cameras (e.g., traffic cameras in a major US city, cameras in future Amazon Go stores)

B Many applications needing access to streams for different tasks

o
o] Application
Application
o
B Datacenter
Application

Application

Stanford (S348K, Fall 2018



Trick 4: share processing across multiple
tasks on the same stream

(Recall how sharing led to speedup across boxes in Mask R-CNN)

Stanford (S348K, Fall 2018



Sharing computation across tasks

B System design forces different networks to share the same trunk
B Amortize cost of early (and expensive layers) across different tasks
B Tough question: given N tasks, how much of DNN should be shared among tasks?

Generic Network Reducing sharing between tasks —

Specific Network
All Parameters Shared

"~ No Parameters Shared

(a) — —> —> —> —> — —> —->
Split fc8 Split fc7 Split fc6 Split convb Split conv4 Split conv3 Split conv2 e L
are ayers
Task A layers
Task B layers
Attributes Classification (mAP) Object Detection (mAP)
-0.16 -0.06 -0.09 i ,
-1.2 -0.8 -1 04 0.34 Difference
-2.2
between
Split
> Network
(b) Surface Normal (Median Error) Semantic Segmentation (mean IU) and Specific

Network

(Ssplit - Sspecific)
-0.4 -0.28

-0.62

. . . . -1.32
Semantic Segmentation Normal estimation

bk

[Image from: Misra et al. CVPR 2016] Stanford (S348K, Fall 2018




Emerging interest in systems that learn how to
share computation across users

20
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[Jiang 18]

Time elapsed (s)
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Less accurate per frame behavior can yield more confident
event detection due to ability to sample event more times.
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Summary

B Anincreasing number of cameras across world will be capturing near
continuous video

®  Many applications will seek to extract value from these data streams

- Implications for efficiency of cities (transportation, infrastructure
monitoring), brick-and-mortar commerce, security, health-care,
robotics, human-robot interactions, autonomous vehicles

m  Need significant efficient gains to process this worldwide visual signal
- Hardware specialization
- Algorithmic techniques to reduce the cost of inference
- Specialization to video stream or scene context
- Exploit temporal coherence of video
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Discussion: privacy e
and ethics

Amazon’s Rekognition messes up,
matches 28 lawmakers to mugshots

ACLU: "And running the entire test cost us $12.33—less than a large pizza."

CYRUS FARIVAR - 7/26/2018, 5:00 AM

Amazon Rekognition

*
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