
Visual Computing Systems
Stanford CS348K, Fall 2018

Lecture 9:

Parallel Deep Network
Training

Stanford CS348K, Fall 2018

Basic gradient descent
while (loss too high):
 for each epoch: // a pass through the training dataset
 for each item x_i in training set:
 grad = evaluate_loss_gradient(f, params, loss_func, x_i)
 params += -grad * learning_rate;

Mini-batch stochastic gradient descent (mini-batch SGD):
choose a random (small) subset of the training examples to use to compute the
gradient in each iteration of the while loop

How do we compute dLoss/dp for a deep neural network with millions of parameters?

while (loss too high):
 for each epoch: // a pass through the training dataset
 for all mini batches in training set:
 grad = 0;
 for each item x_i in minibatch:
 grad += evaluate_loss_gradient(f, params, loss_func, x_i)
 params += -grad * learning_rate;

Stanford CS348K, Fall 2018

Quick review of back-propagation

Stanford CS348K, Fall 2018

Derivatives using the chain rule
f(x, y, z) = (x+ y)z = az a = x+ yWhere:

df

da
= z

df

dx
=

df

da

da

dx
= z

da

dx
= 1

So, by the derivative chain rule:

x

y

z

+

*

3

4

5

7 (a)
5

(df/da)

5
(df/dx)

5
(df/dy)

7
(df/dz)

35 (f)

da

dy
= 1

1
(df/df)

Red = output of node
Blue = df/dnode

Stanford CS348K, Fall 2018

Backpropagation

x

y
+ 10

10

10 dg

dx
= 1 ,

dg

dy
= 1g(x, y) = x+ y

df

dx
=

df

dg

dg

dx

x

y
max

10
0

10
15

12 g(x, y) = max(x, y)
dg

dx
=

1, if x > y
0, otherwise

x

y 10
10*15

10*12
15

12 * g(x, y) = xy
dg

dx
= y ,

dg

dy
= x

Red = output of node
Blue = df/dnode Recall:

Stanford CS348K, Fall 2018

Back-propagating through single unit

f(x0, x1, x2, x3) = max

0,
X

i

xiwi + b

!Recall: behavior of unit:x0

*

max

w0

x1

*w1

x2

*w2

x3

*w3

+

+

+

b

+

0

dloss

dunit

10

y

y

y

y

y

y

y

y

y

yx3

let y =
10, if upper input to max is > 0
0, otherwise

yx2

yx1

yx0

Observe: output of prior layer must be retained in order to compute
weight gradients for this unit during backprop.

yw0

yw1

yw2

yw3

Stanford CS348K, Fall 2018

Data lifetimes during network evaluation

Our model

● Max-pooling layers follow first, second, and
fifth convolutional layers

● The number of neurons in each layer is given
by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000

4

After evaluating layer i, can free outputs from layer i-1

Weights (read-only) reside in memory

Stanford CS348K, Fall 2018

Data lifetimes during training

Our model

● Max-pooling layers follow first, second, and
fifth convolutional layers

● The number of neurons in each layer is given
by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000

4

- Must retain outputs for all layers because they are needed to compute gradients during back-prop
- Parallel back-prop will require storage for per-weight gradients (more about this in a second)
- In practice: may also store per-weight gradient velocity (if using SGD with “momentum”) or step size

cache in adaptive step size schemes like Adagrad

loss

fc7 grad
4k x 4k

fc6 grad
4k x 4k

conv4 grad
3x3x384

conv5 grad
3x3x256

conv3 grad
3x3x384

conv2 grad
5x5x256

conv1 grad
11x11x96

fc7 vel
4k x 4k

fc6 vel
4k x 4k

conv4 vel
3x3x384

conv5 vel
3x3x256

conv3 vel
3x3x384

conv2 vel
5x5x256

conv1 vel
11x11x96

vel_new = mu * vel_old - step_size * grad
w_new = w_old + vel_new

Stanford CS348K, Fall 2018

SGD workload

while (loss too high):

 for each item x_i in mini-batch:
 grad += evaluate_loss_gradient(f, loss_func, params, x_i)

 params += -grad * step_size;

At first glance, this loop is sequential (each step of
“walking downhill” depends on previous)

Parallel across images

sum reduction
large computation with its own parallelism
(but working set may not fit on single machine)

trivial data-parallel over parameters

Stanford CS348K, Fall 2018

DNN training workload
▪ Large computational expense

- Must evaluate the network (forward and backward) for millions of training images
- Must iterate for many iterations of gradient descent (100’s of thousands)
- Training modern networks on big datasets takes days

▪ Large memory footprint
- Must maintain network layer outputs from forward pass
- Additional memory to store gradients/gradient velocity for each parameter
- Recall parameters for popular VGG-16 network require ~500 MB of memory (training

requires GBs of memory for academic networks)
- Scaling to larger networks requires partitioning DNN across nodes to keep DNN +

intermediates in memory

▪ Dependencies /synchronization (not embarrassingly parallel)
- Each parameter update step depends on previous
- Many units contribute to same parameter gradients (fine-scale reduction)
- Different images in mini batch contribute to same parameter gradients

Stanford CS348K, Fall 2018

Synchronous data-parallel training (across images)
 for each item x_i in mini-batch:
 grad += evaluate_loss_gradient(f, loss_func, params, x_i)
 params += -grad * learning_rate;

Consider parallelization of the outer for loop across machines in a cluster

image x0

parameter
gradients
due to x0

Node 0

copy of
parameter

values

image x1

parameter
gradients
due to x1

copy of
parameter

values

Node 1

 partition dataset across nodes
 for each item x_i in mini-batch assigned to local node:
 // just like single node training
 grad += evaluate_loss_gradient(f, loss_func, params, x_i)
 barrier();
 sum reduce gradients, communicate results to all nodes
 barrier();
 update copy of parameter values

Stanford CS348K, Fall 2018

Synchronous training
▪ All nodes cooperate to compute gradients for a mini-batch *

▪ Gradients are summed (across the entire machine)
- All-to-all communication
- Good implementations will sum gradients for layer i when computing

backprop for i+1 (overlap communication and computation).

▪ Update model parameters
- Typically done without wide parallelism (e.g. each machine computes

its own update)

▪ All nodes proceed to work on next mini-batch given new model
parameters

* If curious about batch norm in a parallel training setting. In practice each of k nodes works on a set of n
images, with batch norm statistics computed independently for each set of n (mini-batch size is kn).

Stanford CS348K, Fall 2018

Challenges of scaling out (many nodes)
▪ Slow communication between nodes

- Commodity clusters do not feature high-performance
interconnects (e.g., infiniband) typical of supercomputers

- Synchronous SGD involves all to all communication after each
minibatch

▪ Nodes with different performance (even if machines are the same)
- Workload imbalance at barriers (sync points between nodes)

Alternative solution: exploit properties of SGD by
using asynchronous execution

Stanford CS348K, Fall 2018

Parameter server design

Worker
Node 0

Parameter
Server

parameter
values

Pool of worker nodes

Worker
Node 1

Worker
Node 2

Worker
Node 3

Google’s DistBelief [Dean NIPS12]
Parameter Server [Li OSDI14]
Microsoft’s Project Adam [Chilimbi OSDI14]

Stanford CS348K, Fall 2018

Training data partitioned among workers

Worker
Node 0

Parameter
Server

Pool of worker nodes

x0 - x1000

x1000 - x2000

Worker
Node 1

x2000-3000

x3000-4000

training data training data

training data training data

Worker
Node 2

Worker
Node 3

parameter
values (v0)

Stanford CS348K, Fall 2018

Copy of parameters sent to workers

Worker
Node 0

Parameter
Server

Pool of worker nodes

Worker
Node 1

training data training data

training data training data

local copy of
parameters (v0)

Worker
Node 2

Worker
Node 3

parameter
values (v0)local copy of

parameters (v0)

local copy of
parameters (v0)

local copy of
parameters (v0)

params v0

params v0

params v0

params v0

Stanford CS348K, Fall 2018

Data parallelism: workers independently compute
local “subgradients” on different pieces of data

Worker
Node 0

Parameter
Server

Pool of worker nodes

Worker
Node 1

training data training data

training data training data

Worker
Node 2

Worker
Node 3

local
subgradients

parameter
values (v0)

local
subgradients

local
subgradients

local
subgradients

local copy of
parameters (v0)

local copy of
parameters (v0)

local copy of
parameters (v0)

local copy of
parameters (v0)

Stanford CS348K, Fall 2018

Worker sends subgradient to parameter server

Worker
Node 0

Parameter
Server

parameter
values (v0)

Pool of worker nodes

Worker
Node 1

training data training data

training data training data

Worker
Node 2

Worker
Node 3

subgradient

local
subgradients

local
subgradients

local
subgradients

local
subgradients

local copy of
parameters (v0)

local copy of
parameters (v0)

local copy of
parameters (v0)

local copy of
parameters (v0)

Stanford CS348K, Fall 2018

Server updates global parameter values based on
subgradient

Worker
Node 0

Parameter
Server

parameter
values (v1)

Worker
Node 1

training data training data

training data training data

Worker
Node 2

Worker
Node 3

local
subgradients

local
subgradients

local
subgradients

local
subgradients

local copy of
parameters (v0)

local copy of
parameters (v0)

local copy of
parameters (v0)

local copy of
parameters (v0)

params += -subgrad * step_size;

Stanford CS348K, Fall 2018

Updated parameters sent to worker
Then worker proceeds with another gradient computation step

Worker
Node 0

Parameter
Server

parameter
values (v1)

Worker
Node 1

training data training data

training data training data

Worker
Node 2

Worker
Node 3

local
subgradients

local
subgradients

local
subgradients

local
subgradients

local copy of
parameters (v0)

local copy of
parameters (v1)

local copy of
parameters (v0)

local copy of
parameters (v0)

Notice:

Node 1 is operating on different set of parameter
values than other nodes

Those parameter values were computed without
gradient information from the other nodes

params v1

Stanford CS348K, Fall 2018

Updated parameters sent to worker (again)

Worker
Node 0

Parameter
Server

parameter
values (v1)

Worker
Node 1

training data training data

training data training data

Worker
Node 2

Worker
Node 3

local
subgradients

local
subgradients

local
subgradients

local
subgradients

local copy of
parameters (v0)

local copy of
parameters (v1)

local copy of
parameters (v0)

local copy of
parameters (v0)

subgradient

Stanford CS348K, Fall 2018

Worker continues with updated parameters

Worker
Node 0

Parameter
Server

parameter
values (v2)

Worker
Node 1

training data training data

training data training data

Worker
Node 2

Worker
Node 3

local
subgradients

local
subgradients

local
subgradients

local
subgradients

local copy of
parameters (v0)

local copy of
parameters (v1)

local copy of
parameters (v0)

local copy of
parameters (v2)

params v2

Stanford CS348K, Fall 2018

Summary: asynchronous parameter update
▪ Idea: avoid global synchronization on all parameter updates

between each SGD iteration
- Algorithm design reflects realities of cluster computing:

- Slow interconnects
- Unpredictable machine performance

▪ Solution: asynchronous (and partial) subgradient updates

▪ Will impact convergence of SGD
- Node N working on iteration i may not have parameter values that result the

results of the i-1 prior SGD iterations

Stanford CS348K, Fall 2018

Bottleneck?

Worker
Node 0

Parameter
Server

parameter
values (v2)

Worker
Node 1

training data training data

training data training data

Worker
Node 2

Worker
Node 3

local
subgradients

local
subgradients

local
subgradients

local
subgradients

local copy of
parameters (v0)

local copy of
parameters (v1)

local copy of
parameters (v0)

local copy of
parameters (v2)

What if there is heavy contention for parameter server?

Stanford CS348K, Fall 2018

Shard the parameter server

Worker
Node 0

Parameter
Server 0

parameter
values

(chunk 0)

Worker
Node 1

training data training data

training data training data

Worker
Node 2

Worker
Node 3

local
subgradients

local
subgradients

local
subgradients

local
subgradients

local copy of
parameters (v0)

local copy of
parameters (v1)

local copy of
parameters (v0)

local copy of
parameters (v2)

Partition parameters across servers
Worker sends chunk of subgradients to owning parameter server

Parameter
Server 1

parameter
values

(chunk 1)

subgradient
(chunk 0)

subgradient
(chunk 1)

Reduces data transmission load on individual servers
(less important: also reduces cost of parameter update)

Stanford CS348K, Fall 2018

What if model parameters do not fit on one worker?

Worker
Node 0

Parameter
Server 0

parameter
values

(chunk 0)

Worker
Node 1

training data training data

training data training data

Worker
Node 2

Worker
Node 3

local
subgradients

local
subgradients

local
subgradients

local
subgradients

local copy of
parameters (v0)

local copy of
parameters (v1)

local copy of
parameters (v0)

local copy of
parameters (v2)

Parameter
Server 1

parameter
values

(chunk 1)

Recall high footprint of training large networks
(particularly with large mini-batch sizes)

Stanford CS348K, Fall 2018

Model parallelism

Our model

● Max-pooling layers follow first, second, and
fifth convolutional layers

● The number of neurons in each layer is given
by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000

4

Worker
Node 0

Worker
Node 1

Partition network parameters across nodes
(spatial partitioning to reduce communication)

Reduce internode communication through network design:
- Use small spatial convolutions (1x1 convolutions)
- Reduce/shrink fully-connected layers

Convolutional layers: only need to
communicate outputs near spatial partition

Fully-connected layers:
all data owned by a node
must by communicated to

other nodes

Stanford CS348K, Fall 2018

Data-parallel and model-parallel execution

Worker
Node 0

Parameter
Server 0

parameter
values

(chunk 0)

Worker
Node 1

training data training data

training data training data

Worker
Node 2

Worker
Node 3

local
subgradients

chunk 1

local
subgradients

chunk 0

local copy of
parameters (v1):

chunk 0

local copy of
parameters (v1):

chunk 1

Parameter
Server 1

parameter
values

(chunk 1)

Working on subgradient computation
for a single copy of the model

local copy of
parameters (v0):

chunk 0

local copy of
parameters (v0):

chunk 1
local

subgradients
chunk 1

local
subgradients

chunk 0

Working on subgradient computation
for a single copy of the model

Fine-grained
communication of

layer outputs,
subgradients, etc.

Fine-grained
communication of

layer outputs,
subgradients, etc.

Stanford CS348K, Fall 2018

Asynchronous vs. synchronous debate
▪ Asynchronous training: significant distributed system

complexity incurred to combat bandwidth/latency
constraints of modern cluster computing

▪ Interest in ways to improve scalability of synchronous
training
- Better hardware
- Better algorithms for existing hardware

Stanford CS348K, Fall 2018

Better hardware: using supercomputers for training
▪ Fast interconnects critical for model-parallel training

- Fine-grained communication of outputs and gradients

▪ Fast interconnects diminish need for async training algorithms
- Avoid randomness in training due to schedule of computation (there remains

randomness due to stochastic part of SGD algorithm)

OakRidge Titan Supercomputer
(low-latency interconnect)

NVIDIA DGX-1: 8 GPUs connected via
high speed NV-Link interconnect

($150,000 in 2018)

Stanford CS348K, Fall 2018

Modified algorithmic techniques (again):
improving scalability of synchronous training…

▪ Larger mini-batches increase compute-to-communication ratio:
communicate gradients summed over B training inputs
for each item x in mini-batch on this node:
 grad += evaluate_loss_gradient(f, loss_func, params, x)
barrier();
sum reduce gradients across all nodes, communicate results to all nodes
barrier();
update copy of local parameter values

▪ But large mini-batches (if used naively) reduce accuracy of model
trained

Stanford CS348K, Fall 2018

Increasing learning rate with mini-batch size:
linear scaling rule

ing the same level of accuracy as the 256 minibatch base-

line. While distributed synchronous SGD is now common-
place, no existing results show that validation accuracy can
be maintained with minibatches as large as 8192 or that such
high-accuracy models can be trained in such short time.

To tackle this unusually large minibatch size, we em-
ploy a simple and generalizable linear scaling rule to ad-
just the learning rate. While this guideline is found in ear-
lier work [21, 4], its empirical limits are not well under-
stood and informally we have found that it is not widely
known to the research community. To successfully apply
this rule, we present a new warmup strategy, i.e., a strategy
of using lower learning rates at the start of training [16], to
overcome early optimization difficulties. Importantly, not
only does our approach match the baseline validation error,
but also yields training error curves that closely match the

small minibatch baseline. Details are presented in §2.
Our comprehensive experiments in §5 show that opti-

mization difficulty is the main issue with large minibatches,
rather than poor generalization (at least on ImageNet), in
contrast to some recent studies [20]. Additionally, we show
that the linear scaling rule and warmup generalize to more
complex tasks including object detection and segmentation
[9, 30, 14, 27], which we demonstrate via the recently de-
veloped Mask R-CNN [14]. We note that a robust and suc-
cessful guideline for addressing a wide range of minibatch
sizes has not been presented in previous work.

While the strategy we deliver is simple, its successful
application requires correct implementation with respect to
seemingly minor and often not well understood implemen-
tation details within deep learning libraries. Subtleties in the
implementation of SGD can lead to incorrect solutions that
are difficult to discover. To provide more helpful guidance
we describe common pitfalls and the relevant implementa-
tion details that can trigger these traps in §3.

Our strategy applies regardless of framework, but
achieving efficient linear scaling requires nontrivial com-
munication algorithms. We use the recently open-sourced
Caffe2

1 deep learning framework and Big Basin GPU
servers [24], which operates efficiently using standard Eth-
ernet networking (as opposed to specialized network inter-
faces). We describe the systems algorithms that enable our
approach to operate near its full potential in §4.

The practical advances described in this report are help-
ful across a range of domains. In an industrial domain,
our system unleashes the potential of training visual mod-
els from internet-scale data, enabling training with billions
of images per day. In a research domain, we have found
it to simplify migrating algorithms from a single-GPU
to a multi-GPU implementation without requiring hyper-
parameter search, e.g. in our experience migrating Faster
R-CNN [30] and ResNets [16] from 1 to 8 GPUs.

1http://www.caffe2.ai

2. Large Minibatch SGD
We start by reviewing the formulation of Stochastic Gra-

dient Descent (SGD), which will be the foundation of our
discussions in the following sections. We consider super-
vised learning by minimizing a loss L(w) of the form:

L(w) =
1

|X|
X

x2X

l(x,w). (1)

Here w are the weights of a network, X is a labeled training
set, and l(x,w) is the loss computed from samples x 2 X
and their labels y. Typically l consists of a prediction loss
(e.g., cross-entropy loss) and a regularization loss on w.

Minibatch Stochastic Gradient Descent [31], usually re-
ferred to as simply as SGD in recent literature even though
it operates on minibatches, performs the following update:

wt+1 = wt � ⌘
1

n

X

x2B
rl(x,wt). (2)

Here B is a minibatch sampled from X and n = |B| is the
minibatch size. ⌘ is the learning rate and t is the iteration
index. Note that in practice we use momentum SGD; we
return to a discussion of momentum in §3.

2.1. Learning Rates for Large Minibatches
Our goal is to use large minibatches in place of small

minibatches while maintaining training and generalization

accuracy. This is of particular interest in distributed learn-
ing, because it can allow us to scale to multiple workers2 us-
ing simple data parallelism without reducing the per-worker
workload and without sacrificing model accuracy.

As we will show in comprehensive experiments, we
found that the following learning rate scaling rule is sur-
prisingly effective for a broad range of minibatch sizes:

Linear Scaling Rule: When the minibatch size is

multiplied by k, multiply the learning rate by k.

All other hyper-parameters (weight decay, momentum, etc.)
are kept unchanged. As we will show in §5, the above lin-

ear scaling rule can help us to not only match the accuracy
between using small and large minibatches, but equally im-
portantly, to largely match their training curves.

Interpretation. We present an informal discussion of the
linear scaling rule and why it may be effective. Consider
a network at iteration t with weights wt, and a sequence
of k minibatches Bj for 0 j < k each of size n. We
compare the effect of executing k SGD iterations with small

minibatches Bj and learning rate ⌘ versus a single iteration
with a large minibatch [jBj of size kn and learning rate ⌘̂.

2We use the terms ‘worker’ and ‘GPU’ interchangeably in this work, al-
though other implementations of a ‘worker’ are possible. ‘Server’ denotes
a set of 8 GPUs that does not require communication over a network.

2

According to (2), after k iterations of SGD with learning
rate ⌘ and a minibatch size of n we have:

wt+k = wt � ⌘
1

n

X

j<k

X

x2Bj

rl(x,wt+j). (3)

On the other hand, taking a single step with the large mini-
batch [jBj of size kn and learning rate ⌘̂ yields:

ŵt+1 = wt � ⌘̂
1

kn

X

j<k

X

x2Bj

rl(x,wt). (4)

As expected, the updates differ, and it is unlikely that un-
der any condition ŵt+1 = wt+k. However, if we could

assume rl(x,wt) ⇡ rl(x,wt+j) for j < k, then setting
⌘̂ = kn would yield ŵt+k ⇡ wt+k, and the updates from
small and large minibatch SGD would be similar. Note that
even under this strong assumption, we emphasize that the
two updates can be similar only if we set ⌘̂ = kn.

The above interpretation gives intuition for one case
where we may hope the linear scaling rule to apply. In our
experiments with ⌘̂ = k⌘ (and warmup), small and large
minibatch SGD not only result in models with the same fi-
nal accuracy, but also, the training curves match closely.
Our empirical results suggest that the above approximation
might be valid in large-scale, real-world data.

The assumption that rl(x,wt) ⇡ rl(x,wt+j) often
may not hold, and in practice we found the rule does not
apply in two cases. First, in the initial training epochs when
the network is changing rapidly, it does not hold. We ad-
dress this by using a warmup phase, discussed in §2.2. Sec-
ond, minibatch size cannot be scaled indefinitely: while re-
sults are stable for a large range of sizes, beyond a certain
point accuracy degrades rapidly. Interestingly, this point is
as large as ⇠8k in ImageNet experiments.

Discussion. The above linear scaling rule was adopted by
Krizhevsky [21], if not earlier. However, Krizhevsky re-
ported a 1% increase of error when increasing the minibatch
size from 128 to 1024, whereas we show how to maintain
accuracy across a much broader regime of minibatch sizes.
Chen et al. [5] presented a comparison of numerous dis-
tributed SGD variants, and although their work also em-
ployed the linear scaling rule, it did not establish a small
minibatch baseline (the most related result is in v1 of [5]
which reported a 0.4% increase of error when the minibatch
size increases from 1600 to 6400 images using synchronous
SGD, but results on smaller minibatches are not available).

In their recent review paper, Bottou et al. [4] (section
4.2) discuss the theoretical tradeoffs of minibatching and
show that with the linear scaling rule, solvers follow the
same training curve when having seen the same number of
examples; it also suggests that the learning rate should not
exceed a maximum rate that does not depend on the mini-
batch size (which justifies warmup). Our work empirically
tests these theories with unprecedented minibatch sizes.

2.2. Warmup
As we discussed, for large minibatches (e.g., 8k) the lin-

ear scaling rule breaks down when the network is changing
rapidly, which commonly occurs in early stages of train-
ing. We find that this issue can be alleviated by a properly
designed warmup [16], namely, a strategy of using less ag-
gressive learning rates at the start of training.

Constant warmup. The warmup strategy presented in [16]
uses a low constant learning rate for the first few epochs of
training. As we will show in §5, we have found constant
warmup particularly helpful for prototyping object detec-
tion and segmentation methods [9, 30, 25, 14] that fine-tune
pre-trained layers together with newly initialized layers.

In our ImageNet experiments with a large minibatch of
size kn, we have tried to train with the low learning rate of
⌘ for the first 5 epochs and then return to the target learn-
ing rate of ⌘̂ = k⌘. However, given a large k, we find that
this constant warmup is not sufficient to solve the optimiza-
tion problem, and a transition out of the low learning rate
warmup phase can cause the training error to spike. This
leads us to propose the following gradual warmup.

Gradual warmup. We present an alternative warmup that
gradually ramps up the learning rate from a small to a large
value. This ramp avoids a sudden increase from a small
learning rate to a large one, allowing healthy convergence
at the start of training. In practice, with a large minibatch
of size kn, we start from a learning rate of ⌘ and increment
it by a constant amount at each iteration such that it reaches
⌘̂ = k⌘ after 5 epochs. After the warmup phase, we go back
to the original learning rate schedule.

2.3. Batch Normalization with Large Minibatches
Batch Normalization (BN) [19] computes statistics along

the minibatch dimension: this breaks the independence of
each sample’s loss, and changes in minibatch size change
the underlying definition of the loss function being opti-
mized. In the following we will show that a commonly used
‘shortcut’, which may appear to be a practical consideration
to avoid communication overhead, is actually necessary for
preserving the loss function when changing minibatch size.

We note that (1) and (2) assume the per-sample loss
l(x,w) is independent of all other samples. This is not the
case when BN is performed and activations are computed
across samples. We write lB(x,w) to denote that the loss of
a single sample x depends on the statistics of all samples in
its minibatch B. We denote the loss over a single minibatch
B of size n as L(B, w) = 1

n

P
x2B lB(x,w). With BN, the

training set can be thought of as containing all distinct sub-
sets of size n drawn from the original training set X , which
we denote as Xn. The training loss L(w) then becomes:

L(w) =
1

|Xn|
X

B2Xn

L(B, w). (5)

3

According to (2), after k iterations of SGD with learning
rate ⌘ and a minibatch size of n we have:

wt+k = wt � ⌘
1

n

X

j<k

X

x2Bj

rl(x,wt+j). (3)

On the other hand, taking a single step with the large mini-
batch [jBj of size kn and learning rate ⌘̂ yields:

ŵt+1 = wt � ⌘̂
1

kn

X

j<k

X

x2Bj

rl(x,wt). (4)

As expected, the updates differ, and it is unlikely that un-
der any condition ŵt+1 = wt+k. However, if we could

assume rl(x,wt) ⇡ rl(x,wt+j) for j < k, then setting
⌘̂ = kn would yield ŵt+k ⇡ wt+k, and the updates from
small and large minibatch SGD would be similar. Note that
even under this strong assumption, we emphasize that the
two updates can be similar only if we set ⌘̂ = kn.

The above interpretation gives intuition for one case
where we may hope the linear scaling rule to apply. In our
experiments with ⌘̂ = k⌘ (and warmup), small and large
minibatch SGD not only result in models with the same fi-
nal accuracy, but also, the training curves match closely.
Our empirical results suggest that the above approximation
might be valid in large-scale, real-world data.

The assumption that rl(x,wt) ⇡ rl(x,wt+j) often
may not hold, and in practice we found the rule does not
apply in two cases. First, in the initial training epochs when
the network is changing rapidly, it does not hold. We ad-
dress this by using a warmup phase, discussed in §2.2. Sec-
ond, minibatch size cannot be scaled indefinitely: while re-
sults are stable for a large range of sizes, beyond a certain
point accuracy degrades rapidly. Interestingly, this point is
as large as ⇠8k in ImageNet experiments.

Discussion. The above linear scaling rule was adopted by
Krizhevsky [21], if not earlier. However, Krizhevsky re-
ported a 1% increase of error when increasing the minibatch
size from 128 to 1024, whereas we show how to maintain
accuracy across a much broader regime of minibatch sizes.
Chen et al. [5] presented a comparison of numerous dis-
tributed SGD variants, and although their work also em-
ployed the linear scaling rule, it did not establish a small
minibatch baseline (the most related result is in v1 of [5]
which reported a 0.4% increase of error when the minibatch
size increases from 1600 to 6400 images using synchronous
SGD, but results on smaller minibatches are not available).

In their recent review paper, Bottou et al. [4] (section
4.2) discuss the theoretical tradeoffs of minibatching and
show that with the linear scaling rule, solvers follow the
same training curve when having seen the same number of
examples; it also suggests that the learning rate should not
exceed a maximum rate that does not depend on the mini-
batch size (which justifies warmup). Our work empirically
tests these theories with unprecedented minibatch sizes.

2.2. Warmup
As we discussed, for large minibatches (e.g., 8k) the lin-

ear scaling rule breaks down when the network is changing
rapidly, which commonly occurs in early stages of train-
ing. We find that this issue can be alleviated by a properly
designed warmup [16], namely, a strategy of using less ag-
gressive learning rates at the start of training.

Constant warmup. The warmup strategy presented in [16]
uses a low constant learning rate for the first few epochs of
training. As we will show in §5, we have found constant
warmup particularly helpful for prototyping object detec-
tion and segmentation methods [9, 30, 25, 14] that fine-tune
pre-trained layers together with newly initialized layers.

In our ImageNet experiments with a large minibatch of
size kn, we have tried to train with the low learning rate of
⌘ for the first 5 epochs and then return to the target learn-
ing rate of ⌘̂ = k⌘. However, given a large k, we find that
this constant warmup is not sufficient to solve the optimiza-
tion problem, and a transition out of the low learning rate
warmup phase can cause the training error to spike. This
leads us to propose the following gradual warmup.

Gradual warmup. We present an alternative warmup that
gradually ramps up the learning rate from a small to a large
value. This ramp avoids a sudden increase from a small
learning rate to a large one, allowing healthy convergence
at the start of training. In practice, with a large minibatch
of size kn, we start from a learning rate of ⌘ and increment
it by a constant amount at each iteration such that it reaches
⌘̂ = k⌘ after 5 epochs. After the warmup phase, we go back
to the original learning rate schedule.

2.3. Batch Normalization with Large Minibatches
Batch Normalization (BN) [19] computes statistics along

the minibatch dimension: this breaks the independence of
each sample’s loss, and changes in minibatch size change
the underlying definition of the loss function being opti-
mized. In the following we will show that a commonly used
‘shortcut’, which may appear to be a practical consideration
to avoid communication overhead, is actually necessary for
preserving the loss function when changing minibatch size.

We note that (1) and (2) assume the per-sample loss
l(x,w) is independent of all other samples. This is not the
case when BN is performed and activations are computed
across samples. We write lB(x,w) to denote that the loss of
a single sample x depends on the statistics of all samples in
its minibatch B. We denote the loss over a single minibatch
B of size n as L(B, w) = 1

n

P
x2B lB(x,w). With BN, the

training set can be thought of as containing all distinct sub-
sets of size n drawn from the original training set X , which
we denote as Xn. The training loss L(w) then becomes:

L(w) =
1

|Xn|
X

B2Xn

L(B, w). (5)

3

Recall: minibatch SGD parameter update

Consider processing of k minibatches (k steps of gradient descent)

size of mini batch = n
SGD learning rate = ⌘

Consider processing one minibatch that is of size kn (one step of gradient descent)

Suggests that if for j < k then minibatch SGD with size n and
learning rate can be approximated by large mini batch SGD with size kn if the
learning rate is also scaled to

According to (2), after k iterations of SGD with learning
rate ⌘ and a minibatch size of n we have:

wt+k = wt � ⌘
1

n

X

j<k

X

x2Bj

rl(x,wt+j). (3)

On the other hand, taking a single step with the large mini-
batch [jBj of size kn and learning rate ⌘̂ yields:

ŵt+1 = wt � ⌘̂
1

kn

X

j<k

X

x2Bj

rl(x,wt). (4)

As expected, the updates differ, and it is unlikely that un-
der any condition ŵt+1 = wt+k. However, if we could

assume rl(x,wt) ⇡ rl(x,wt+j) for j < k, then setting
⌘̂ = kn would yield ŵt+k ⇡ wt+k, and the updates from
small and large minibatch SGD would be similar. Note that
even under this strong assumption, we emphasize that the
two updates can be similar only if we set ⌘̂ = kn.

The above interpretation gives intuition for one case
where we may hope the linear scaling rule to apply. In our
experiments with ⌘̂ = k⌘ (and warmup), small and large
minibatch SGD not only result in models with the same fi-
nal accuracy, but also, the training curves match closely.
Our empirical results suggest that the above approximation
might be valid in large-scale, real-world data.

The assumption that rl(x,wt) ⇡ rl(x,wt+j) often
may not hold, and in practice we found the rule does not
apply in two cases. First, in the initial training epochs when
the network is changing rapidly, it does not hold. We ad-
dress this by using a warmup phase, discussed in §2.2. Sec-
ond, minibatch size cannot be scaled indefinitely: while re-
sults are stable for a large range of sizes, beyond a certain
point accuracy degrades rapidly. Interestingly, this point is
as large as ⇠8k in ImageNet experiments.

Discussion. The above linear scaling rule was adopted by
Krizhevsky [21], if not earlier. However, Krizhevsky re-
ported a 1% increase of error when increasing the minibatch
size from 128 to 1024, whereas we show how to maintain
accuracy across a much broader regime of minibatch sizes.
Chen et al. [5] presented a comparison of numerous dis-
tributed SGD variants, and although their work also em-
ployed the linear scaling rule, it did not establish a small
minibatch baseline (the most related result is in v1 of [5]
which reported a 0.4% increase of error when the minibatch
size increases from 1600 to 6400 images using synchronous
SGD, but results on smaller minibatches are not available).

In their recent review paper, Bottou et al. [4] (section
4.2) discuss the theoretical tradeoffs of minibatching and
show that with the linear scaling rule, solvers follow the
same training curve when having seen the same number of
examples; it also suggests that the learning rate should not
exceed a maximum rate that does not depend on the mini-
batch size (which justifies warmup). Our work empirically
tests these theories with unprecedented minibatch sizes.

2.2. Warmup
As we discussed, for large minibatches (e.g., 8k) the lin-

ear scaling rule breaks down when the network is changing
rapidly, which commonly occurs in early stages of train-
ing. We find that this issue can be alleviated by a properly
designed warmup [16], namely, a strategy of using less ag-
gressive learning rates at the start of training.

Constant warmup. The warmup strategy presented in [16]
uses a low constant learning rate for the first few epochs of
training. As we will show in §5, we have found constant
warmup particularly helpful for prototyping object detec-
tion and segmentation methods [9, 30, 25, 14] that fine-tune
pre-trained layers together with newly initialized layers.

In our ImageNet experiments with a large minibatch of
size kn, we have tried to train with the low learning rate of
⌘ for the first 5 epochs and then return to the target learn-
ing rate of ⌘̂ = k⌘. However, given a large k, we find that
this constant warmup is not sufficient to solve the optimiza-
tion problem, and a transition out of the low learning rate
warmup phase can cause the training error to spike. This
leads us to propose the following gradual warmup.

Gradual warmup. We present an alternative warmup that
gradually ramps up the learning rate from a small to a large
value. This ramp avoids a sudden increase from a small
learning rate to a large one, allowing healthy convergence
at the start of training. In practice, with a large minibatch
of size kn, we start from a learning rate of ⌘ and increment
it by a constant amount at each iteration such that it reaches
⌘̂ = k⌘ after 5 epochs. After the warmup phase, we go back
to the original learning rate schedule.

2.3. Batch Normalization with Large Minibatches
Batch Normalization (BN) [19] computes statistics along

the minibatch dimension: this breaks the independence of
each sample’s loss, and changes in minibatch size change
the underlying definition of the loss function being opti-
mized. In the following we will show that a commonly used
‘shortcut’, which may appear to be a practical consideration
to avoid communication overhead, is actually necessary for
preserving the loss function when changing minibatch size.

We note that (1) and (2) assume the per-sample loss
l(x,w) is independent of all other samples. This is not the
case when BN is performed and activations are computed
across samples. We write lB(x,w) to denote that the loss of
a single sample x depends on the statistics of all samples in
its minibatch B. We denote the loss over a single minibatch
B of size n as L(B, w) = 1

n

P
x2B lB(x,w). With BN, the

training set can be thought of as containing all distinct sub-
sets of size n drawn from the original training set X , which
we denote as Xn. The training loss L(w) then becomes:

L(w) =
1

|Xn|
X

B2Xn

L(B, w). (5)

3

⌘
k⌘

[Goyal 2017]

Stanford CS348K, Fall 2018

When does not hold?
1. At beginning of training

- Suggests starting training with
smaller learning rate (learning
rate “warmup”)

2. When minibatch size begins to get
too large (there is a limit to scaling
minibatch size)

According to (2), after k iterations of SGD with learning
rate ⌘ and a minibatch size of n we have:

wt+k = wt � ⌘
1

n

X

j<k

X

x2Bj

rl(x,wt+j). (3)

On the other hand, taking a single step with the large mini-
batch [jBj of size kn and learning rate ⌘̂ yields:

ŵt+1 = wt � ⌘̂
1

kn

X

j<k

X

x2Bj

rl(x,wt). (4)

As expected, the updates differ, and it is unlikely that un-
der any condition ŵt+1 = wt+k. However, if we could

assume rl(x,wt) ⇡ rl(x,wt+j) for j < k, then setting
⌘̂ = kn would yield ŵt+k ⇡ wt+k, and the updates from
small and large minibatch SGD would be similar. Note that
even under this strong assumption, we emphasize that the
two updates can be similar only if we set ⌘̂ = kn.

The above interpretation gives intuition for one case
where we may hope the linear scaling rule to apply. In our
experiments with ⌘̂ = k⌘ (and warmup), small and large
minibatch SGD not only result in models with the same fi-
nal accuracy, but also, the training curves match closely.
Our empirical results suggest that the above approximation
might be valid in large-scale, real-world data.

The assumption that rl(x,wt) ⇡ rl(x,wt+j) often
may not hold, and in practice we found the rule does not
apply in two cases. First, in the initial training epochs when
the network is changing rapidly, it does not hold. We ad-
dress this by using a warmup phase, discussed in §2.2. Sec-
ond, minibatch size cannot be scaled indefinitely: while re-
sults are stable for a large range of sizes, beyond a certain
point accuracy degrades rapidly. Interestingly, this point is
as large as ⇠8k in ImageNet experiments.

Discussion. The above linear scaling rule was adopted by
Krizhevsky [21], if not earlier. However, Krizhevsky re-
ported a 1% increase of error when increasing the minibatch
size from 128 to 1024, whereas we show how to maintain
accuracy across a much broader regime of minibatch sizes.
Chen et al. [5] presented a comparison of numerous dis-
tributed SGD variants, and although their work also em-
ployed the linear scaling rule, it did not establish a small
minibatch baseline (the most related result is in v1 of [5]
which reported a 0.4% increase of error when the minibatch
size increases from 1600 to 6400 images using synchronous
SGD, but results on smaller minibatches are not available).

In their recent review paper, Bottou et al. [4] (section
4.2) discuss the theoretical tradeoffs of minibatching and
show that with the linear scaling rule, solvers follow the
same training curve when having seen the same number of
examples; it also suggests that the learning rate should not
exceed a maximum rate that does not depend on the mini-
batch size (which justifies warmup). Our work empirically
tests these theories with unprecedented minibatch sizes.

2.2. Warmup
As we discussed, for large minibatches (e.g., 8k) the lin-

ear scaling rule breaks down when the network is changing
rapidly, which commonly occurs in early stages of train-
ing. We find that this issue can be alleviated by a properly
designed warmup [16], namely, a strategy of using less ag-
gressive learning rates at the start of training.

Constant warmup. The warmup strategy presented in [16]
uses a low constant learning rate for the first few epochs of
training. As we will show in §5, we have found constant
warmup particularly helpful for prototyping object detec-
tion and segmentation methods [9, 30, 25, 14] that fine-tune
pre-trained layers together with newly initialized layers.

In our ImageNet experiments with a large minibatch of
size kn, we have tried to train with the low learning rate of
⌘ for the first 5 epochs and then return to the target learn-
ing rate of ⌘̂ = k⌘. However, given a large k, we find that
this constant warmup is not sufficient to solve the optimiza-
tion problem, and a transition out of the low learning rate
warmup phase can cause the training error to spike. This
leads us to propose the following gradual warmup.

Gradual warmup. We present an alternative warmup that
gradually ramps up the learning rate from a small to a large
value. This ramp avoids a sudden increase from a small
learning rate to a large one, allowing healthy convergence
at the start of training. In practice, with a large minibatch
of size kn, we start from a learning rate of ⌘ and increment
it by a constant amount at each iteration such that it reaches
⌘̂ = k⌘ after 5 epochs. After the warmup phase, we go back
to the original learning rate schedule.

2.3. Batch Normalization with Large Minibatches
Batch Normalization (BN) [19] computes statistics along

the minibatch dimension: this breaks the independence of
each sample’s loss, and changes in minibatch size change
the underlying definition of the loss function being opti-
mized. In the following we will show that a commonly used
‘shortcut’, which may appear to be a practical consideration
to avoid communication overhead, is actually necessary for
preserving the loss function when changing minibatch size.

We note that (1) and (2) assume the per-sample loss
l(x,w) is independent of all other samples. This is not the
case when BN is performed and activations are computed
across samples. We write lB(x,w) to denote that the loss of
a single sample x depends on the statistics of all samples in
its minibatch B. We denote the loss over a single minibatch
B of size n as L(B, w) = 1

n

P
x2B lB(x,w). With BN, the

training set can be thought of as containing all distinct sub-
sets of size n drawn from the original training set X , which
we denote as Xn. The training loss L(w) then becomes:

L(w) =
1

|Xn|
X

B2Xn

L(B, w). (5)

3

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollár Ross Girshick Pieter Noordhuis
Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangqing Jia Kaiming He

Facebook

Abstract

Deep learning thrives with large neural networks and

large datasets. However, larger networks and larger

datasets result in longer training times that impede re-

search and development progress. Distributed synchronous

SGD offers a potential solution to this problem by dividing

SGD minibatches over a pool of parallel workers. Yet to

make this scheme efficient, the per-worker workload must

be large, which implies nontrivial growth in the SGD mini-

batch size. In this paper, we empirically show that on the

ImageNet dataset large minibatches cause optimization dif-

ficulties, but when these are addressed the trained networks

exhibit good generalization. Specifically, we show no loss

of accuracy when training with large minibatch sizes up to

8192 images. To achieve this result, we adopt a linear scal-

ing rule for adjusting learning rates as a function of mini-

batch size and develop a new warmup scheme that over-

comes optimization challenges early in training. With these

simple techniques, our Caffe2-based system trains ResNet-

50 with a minibatch size of 8192 on 256 GPUs in one hour,

while matching small minibatch accuracy. Using commod-

ity hardware, our implementation achieves ⇠90% scaling

efficiency when moving from 8 to 256 GPUs. This system

enables us to train visual recognition models on internet-

scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in AI
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 40, 33, 34, 35, 16], speech [17, 39], and natural lan-
guage processing [7, 37]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Im-
ageNet classification [32] and can be transferred to diffi-
cult perception problems such as object detection and seg-

64 128 256 512 1k 2k 4k 8k 16k 32k 64k

mini-batch size

20

25

30

35

40

Im
a
g
e
N

e
t
to

p
-1

 v
a
lid

a
tio

n
 e

rr
o
r

Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-

ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ⇠90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

mentation [8, 10, 27]. Moreover, this pattern generalizes:
larger datasets and network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 40, 33, 34, 35, 16]. But as model and data
scale grow, so does training time; discovering the poten-
tial and limits of scaling deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility
of and to communicate a practical guide to large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] train-
ing, originally performed with a minibatch size of 256 im-
ages (using 8 Tesla P100 GPUs, training time is 29 hours),
to larger minibatches (see Figure 1). In particular, we
show that with a large minibatch size of 8192, using 256

GPUs, we can train ResNet-50 in 1 hour while maintain-

1

ar
X

iv
:1

70
6.

02
67

7v
1

 [c
s.C

V
]

8
Ju

n
20

17

0 20 40 60 80

epochs

20

30

40

50

60

70

80

90

100

tr
a

in
in

g
 e

rr
o

r
%

kn=256, = 0.1, 23.60% 0.12

kn= 8k, = 3.2, 24.84% 0.37

(a) no warmup

0 20 40 60 80

epochs

kn=256, = 0.1, 23.60% 0.12

kn= 8k, = 3.2, 25.88% 0.56

(b) constant warmup

0 20 40 60 80

epochs

kn=256, = 0.1, 23.60% 0.12

kn= 8k, = 3.2, 23.74% 0.09

(c) gradual warmup

Figure 2. Warmup. Training error curves for minibatch size 8192 using various warmup strategies compared to minibatch size 256.
Validation error (mean±std of 5 runs) is shown in the legend, along with minibatch size kn and reference learning rate ⌘.

0 20 40 60 80
20

30

40

50

60

70

80

90

100

tr
a

in
in

g
 e

rr
o

r
%

kn=256, = 0.1, 23.60% 0.12

kn=128, = 0.05 23.49% 0.12

0 20 40 60 80

kn=256, = 0.1, 23.60% 0.12

kn=512, = 0.2, 23.48% 0.09

0 20 40 60 80

kn=256, = 0.1, 23.60% 0.12

kn= 1k, = 0.4, 23.53% 0.08

0 20 40 60 80
20

30

40

50

60

70

80

90

100

tr
a

in
in

g
 e

rr
o

r
%

kn=256, = 0.1, 23.60% 0.12

kn= 2k, = 0.8, 23.49% 0.11

0 20 40 60 80

kn=256, = 0.1, 23.60% 0.12

kn= 4k, = 1.6, 23.56% 0.12

0 20 40 60 80

kn=256, = 0.1, 23.60% 0.12

kn= 8k, = 3.2, 23.74% 0.09

0 20 40 60 80

epochs

20

30

40

50

60

70

80

90

100

tr
a

in
in

g
 e

rr
o

r
%

kn=256, = 0.1, 23.60% 0.12

kn=16k, = 6.4, 24.79% 0.27

0 20 40 60 80

epochs

kn=256, = 0.1, 23.60% 0.12

kn=32k, =12.8, 27.55% 0.28

0 20 40 60 80

epochs

kn=256, = 0.1, 23.60% 0.12

kn=64k, =25.6, 33.96% 0.80

Figure 3. Training error vs. minibatch size. Training error curves for the 256 minibatch baseline and larger minibatches using gradual
warmup and the linear scaling rule. Note how the training curves closely match the baseline (aside from the warmup period) up through 8k
minibatches. Validation error (mean±std of 5 runs) is shown in the legend, along with minibatch size kn and reference learning rate ⌘.

8

ResNet-50 Training
on 256 machines

Minibatch size = 256 (orange) vs. 8192 (blue) [Figure credit: Goyal et al. 2017]

Stanford CS348K, Fall 2018

Gradient compression
▪ Each node computes gradients for minibatch, but only sends

gradients with magnitude above a threshold

▪ Locally accumulate gradients below threshold over multiple
SGD steps (then send when exceed threshold)

for all iterations t:

Compress and send ONLY the elements of greater than threshold.
(then locally zero out sent elements)

Gk
t

Gk
t = Gk

t�1 + ⌘
1

Nb

NX

k=1

bX

x2Bk

rf(x;wt)

Gk
0 = 0

SGD update on each note only uses the sent weights.

[Lin et al. ICLR 2018]

Stanford CS348K, Fall 2018

Handling momentum

Published as a conference paper at ICLR 2018

3.2 IMPROVING THE LOCAL GRADIENT ACCUMULATION

Without care, the sparse update will greatly harm convergence when sparsity is extremely high
(Chen et al., 2017). For example, Algorithm 1 incurred more than 1.0% loss of accuracy on the
Cifar10 dataset, as shown in Figure 3(a). We find momentum correction and local gradient clipping
can mitigate this problem.

Momentum Correction Momentum SGD is widely used in place of vanilla SGD. However, Al-
gorithm 1 doesn’t directly apply to SGD with the momentum term, since it ignores the discounting
factor between the sparse update intervals.

Distributed training with vanilla momentum SGD on N training nodes follows (Qian, 1999),

ut = mut�1 +
NX

k=1

(Ok,t) , wt+1 = wt � ⌘ut (3)

where m is the momentum, N is the number of training nodes, and Ok,t =
1
Nb

P
x2Bk,t

Of(x,wt).

Consider the weight value w(i) of i-th position in flattened weights w. After T iterations, the change
in weight value w

(i) shows as follows,

w
(i)
t+T = w

(i)
t � ⌘

"
· · ·+

T�2X

⌧=0

m
⌧

!
O

(i)
k,t+1 +

T�1X

⌧=0

m
⌧

!
O

(i)
k,t

#
(4)

If SGD with the momentum is directly applied to the sparse gradient scenario (line 15 in Algorithm
1), the update rule is no longer equivalent to Equation 3, which becomes:

vk,t = vk,t�1 + Ok,t, ut = mut�1 +
NX

k=1

sparse (vk,t) , wt+1 = wt � ⌘ut (5)

where the first term is the local gradient accumulation on the training node k. Once the accumulation
result vk,t is larger than a threshold, it will pass hard thresholding in the sparse () function, and be
encoded and get sent over the network in the second term. Similarly to the line 12 in Algorithm 1,
the accumulation result vk,t gets cleared by the mask in the sparse () function.

The change in weight value w
(i) after the sparse update interval T becomes,

w
(i)
t+T = w

(i)
t � ⌘

⇣
· · ·+ O

(i)
k,t+1 + O

(i)
k,t

⌘
(6)

The disappearance of the accumulated discounting factor
PT�1

⌧=0 m
⌧ in Equation 6 compared to

Equation 4 leads to the loss of convergence performance. It is illustrated in Figure 2(a), where
Equation 4 drives the optimization from point A to point B, but with local gradient accumulation,
Equation 4 goes to point C. When the gradient sparsity is high, the update interval T dramatically
increases, and thus the significant side effect will harm the model performance. To avoid this error,
we need momentum correction on top of Equation 5 to make sure the sparse update is equivalent to
the dense update as in Equation 3.

If we regard the velocity ut in Equation 3 as ”gradient”, the second term of Equation 3 can be
considered as the vanilla SGD for the ”gradient” ut. The local gradient accumulation is proved to
be effective for the vanilla SGD in Section 3.1. Therefore, we can locally accumulate the velocity
ut instead of the real gradient Ok,t to migrate Equation 5 to approach Equation 3:

uk,t = muk,t�1 + Ok,t, vk,t = vk,t�1 + uk,t, wt+1 = wt � ⌘

NX

k=1

sparse (vk,t) (7)

where the first two terms are the corrected local gradient accumulation, and the accumulation result
vk,t is used for the subsequent sparsification and communication. By this simple change in the local
accumulation, we can deduce the accumulated discounting factor

PT�1
⌧=0 m

⌧ in Equation 4 from
Equation 7, as shown in Figure 2(b).

We refer to this migration as the momentum correction. It is a tweak to the update equation, it
doesn’t incur any hyper parameter. Beyond the vanilla momentum SGD, we also look into Nesterov
momentum SGD in Appendix B, which is similar to momentum SGD.

4

Published as a conference paper at ICLR 2018

3.2 IMPROVING THE LOCAL GRADIENT ACCUMULATION

Without care, the sparse update will greatly harm convergence when sparsity is extremely high
(Chen et al., 2017). For example, Algorithm 1 incurred more than 1.0% loss of accuracy on the
Cifar10 dataset, as shown in Figure 3(a). We find momentum correction and local gradient clipping
can mitigate this problem.

Momentum Correction Momentum SGD is widely used in place of vanilla SGD. However, Al-
gorithm 1 doesn’t directly apply to SGD with the momentum term, since it ignores the discounting
factor between the sparse update intervals.

Distributed training with vanilla momentum SGD on N training nodes follows (Qian, 1999),

ut = mut�1 +
NX

k=1

(Ok,t) , wt+1 = wt � ⌘ut (3)

where m is the momentum, N is the number of training nodes, and Ok,t =
1
Nb

P
x2Bk,t

Of(x,wt).

Consider the weight value w(i) of i-th position in flattened weights w. After T iterations, the change
in weight value w

(i) shows as follows,

w
(i)
t+T = w

(i)
t � ⌘

"
· · ·+

T�2X

⌧=0

m
⌧

!
O

(i)
k,t+1 +

T�1X

⌧=0

m
⌧

!
O

(i)
k,t

#
(4)

If SGD with the momentum is directly applied to the sparse gradient scenario (line 15 in Algorithm
1), the update rule is no longer equivalent to Equation 3, which becomes:

vk,t = vk,t�1 + Ok,t, ut = mut�1 +
NX

k=1

sparse (vk,t) , wt+1 = wt � ⌘ut (5)

where the first term is the local gradient accumulation on the training node k. Once the accumulation
result vk,t is larger than a threshold, it will pass hard thresholding in the sparse () function, and be
encoded and get sent over the network in the second term. Similarly to the line 12 in Algorithm 1,
the accumulation result vk,t gets cleared by the mask in the sparse () function.

The change in weight value w
(i) after the sparse update interval T becomes,

w
(i)
t+T = w

(i)
t � ⌘

⇣
· · ·+ O

(i)
k,t+1 + O

(i)
k,t

⌘
(6)

The disappearance of the accumulated discounting factor
PT�1

⌧=0 m
⌧ in Equation 6 compared to

Equation 4 leads to the loss of convergence performance. It is illustrated in Figure 2(a), where
Equation 4 drives the optimization from point A to point B, but with local gradient accumulation,
Equation 4 goes to point C. When the gradient sparsity is high, the update interval T dramatically
increases, and thus the significant side effect will harm the model performance. To avoid this error,
we need momentum correction on top of Equation 5 to make sure the sparse update is equivalent to
the dense update as in Equation 3.

If we regard the velocity ut in Equation 3 as ”gradient”, the second term of Equation 3 can be
considered as the vanilla SGD for the ”gradient” ut. The local gradient accumulation is proved to
be effective for the vanilla SGD in Section 3.1. Therefore, we can locally accumulate the velocity
ut instead of the real gradient Ok,t to migrate Equation 5 to approach Equation 3:

uk,t = muk,t�1 + Ok,t, vk,t = vk,t�1 + uk,t, wt+1 = wt � ⌘

NX

k=1

sparse (vk,t) (7)

where the first two terms are the corrected local gradient accumulation, and the accumulation result
vk,t is used for the subsequent sparsification and communication. By this simple change in the local
accumulation, we can deduce the accumulated discounting factor

PT�1
⌧=0 m

⌧ in Equation 4 from
Equation 7, as shown in Figure 2(b).

We refer to this migration as the momentum correction. It is a tweak to the update equation, it
doesn’t incur any hyper parameter. Beyond the vanilla momentum SGD, we also look into Nesterov
momentum SGD in Appendix B, which is similar to momentum SGD.

4

Published as a conference paper at ICLR 2018

3.2 IMPROVING THE LOCAL GRADIENT ACCUMULATION

Without care, the sparse update will greatly harm convergence when sparsity is extremely high
(Chen et al., 2017). For example, Algorithm 1 incurred more than 1.0% loss of accuracy on the
Cifar10 dataset, as shown in Figure 3(a). We find momentum correction and local gradient clipping
can mitigate this problem.

Momentum Correction Momentum SGD is widely used in place of vanilla SGD. However, Al-
gorithm 1 doesn’t directly apply to SGD with the momentum term, since it ignores the discounting
factor between the sparse update intervals.

Distributed training with vanilla momentum SGD on N training nodes follows (Qian, 1999),

ut = mut�1 +
NX

k=1

(Ok,t) , wt+1 = wt � ⌘ut (3)

where m is the momentum, N is the number of training nodes, and Ok,t =
1
Nb

P
x2Bk,t

Of(x,wt).

Consider the weight value w(i) of i-th position in flattened weights w. After T iterations, the change
in weight value w

(i) shows as follows,

w
(i)
t+T = w

(i)
t � ⌘

"
· · ·+

T�2X

⌧=0

m
⌧

!
O

(i)
k,t+1 +

T�1X

⌧=0

m
⌧

!
O

(i)
k,t

#
(4)

If SGD with the momentum is directly applied to the sparse gradient scenario (line 15 in Algorithm
1), the update rule is no longer equivalent to Equation 3, which becomes:

vk,t = vk,t�1 + Ok,t, ut = mut�1 +
NX

k=1

sparse (vk,t) , wt+1 = wt � ⌘ut (5)

where the first term is the local gradient accumulation on the training node k. Once the accumulation
result vk,t is larger than a threshold, it will pass hard thresholding in the sparse () function, and be
encoded and get sent over the network in the second term. Similarly to the line 12 in Algorithm 1,
the accumulation result vk,t gets cleared by the mask in the sparse () function.

The change in weight value w
(i) after the sparse update interval T becomes,

w
(i)
t+T = w

(i)
t � ⌘

⇣
· · ·+ O

(i)
k,t+1 + O

(i)
k,t

⌘
(6)

The disappearance of the accumulated discounting factor
PT�1

⌧=0 m
⌧ in Equation 6 compared to

Equation 4 leads to the loss of convergence performance. It is illustrated in Figure 2(a), where
Equation 4 drives the optimization from point A to point B, but with local gradient accumulation,
Equation 4 goes to point C. When the gradient sparsity is high, the update interval T dramatically
increases, and thus the significant side effect will harm the model performance. To avoid this error,
we need momentum correction on top of Equation 5 to make sure the sparse update is equivalent to
the dense update as in Equation 3.

If we regard the velocity ut in Equation 3 as ”gradient”, the second term of Equation 3 can be
considered as the vanilla SGD for the ”gradient” ut. The local gradient accumulation is proved to
be effective for the vanilla SGD in Section 3.1. Therefore, we can locally accumulate the velocity
ut instead of the real gradient Ok,t to migrate Equation 5 to approach Equation 3:

uk,t = muk,t�1 + Ok,t, vk,t = vk,t�1 + uk,t, wt+1 = wt � ⌘

NX

k=1

sparse (vk,t) (7)

where the first two terms are the corrected local gradient accumulation, and the accumulation result
vk,t is used for the subsequent sparsification and communication. By this simple change in the local
accumulation, we can deduce the accumulated discounting factor

PT�1
⌧=0 m

⌧ in Equation 4 from
Equation 7, as shown in Figure 2(b).

We refer to this migration as the momentum correction. It is a tweak to the update equation, it
doesn’t incur any hyper parameter. Beyond the vanilla momentum SGD, we also look into Nesterov
momentum SGD in Appendix B, which is similar to momentum SGD.

4

Consider weight update with momentum after T iterations of SGD

Basic sparse update: (what’s the problem?)

Published as a conference paper at ICLR 2018

3.2 IMPROVING THE LOCAL GRADIENT ACCUMULATION

Without care, the sparse update will greatly harm convergence when sparsity is extremely high
(Chen et al., 2017). For example, Algorithm 1 incurred more than 1.0% loss of accuracy on the
Cifar10 dataset, as shown in Figure 3(a). We find momentum correction and local gradient clipping
can mitigate this problem.

Momentum Correction Momentum SGD is widely used in place of vanilla SGD. However, Al-
gorithm 1 doesn’t directly apply to SGD with the momentum term, since it ignores the discounting
factor between the sparse update intervals.

Distributed training with vanilla momentum SGD on N training nodes follows (Qian, 1999),

ut = mut�1 +
NX

k=1

(Ok,t) , wt+1 = wt � ⌘ut (3)

where m is the momentum, N is the number of training nodes, and Ok,t =
1
Nb

P
x2Bk,t

Of(x,wt).

Consider the weight value w(i) of i-th position in flattened weights w. After T iterations, the change
in weight value w

(i) shows as follows,

w
(i)
t+T = w

(i)
t � ⌘

"
· · ·+

T�2X

⌧=0

m
⌧

!
O

(i)
k,t+1 +

T�1X

⌧=0

m
⌧

!
O

(i)
k,t

#
(4)

If SGD with the momentum is directly applied to the sparse gradient scenario (line 15 in Algorithm
1), the update rule is no longer equivalent to Equation 3, which becomes:

vk,t = vk,t�1 + Ok,t, ut = mut�1 +
NX

k=1

sparse (vk,t) , wt+1 = wt � ⌘ut (5)

where the first term is the local gradient accumulation on the training node k. Once the accumulation
result vk,t is larger than a threshold, it will pass hard thresholding in the sparse () function, and be
encoded and get sent over the network in the second term. Similarly to the line 12 in Algorithm 1,
the accumulation result vk,t gets cleared by the mask in the sparse () function.

The change in weight value w
(i) after the sparse update interval T becomes,

w
(i)
t+T = w

(i)
t � ⌘

⇣
· · ·+ O

(i)
k,t+1 + O

(i)
k,t

⌘
(6)

The disappearance of the accumulated discounting factor
PT�1

⌧=0 m
⌧ in Equation 6 compared to

Equation 4 leads to the loss of convergence performance. It is illustrated in Figure 2(a), where
Equation 4 drives the optimization from point A to point B, but with local gradient accumulation,
Equation 4 goes to point C. When the gradient sparsity is high, the update interval T dramatically
increases, and thus the significant side effect will harm the model performance. To avoid this error,
we need momentum correction on top of Equation 5 to make sure the sparse update is equivalent to
the dense update as in Equation 3.

If we regard the velocity ut in Equation 3 as ”gradient”, the second term of Equation 3 can be
considered as the vanilla SGD for the ”gradient” ut. The local gradient accumulation is proved to
be effective for the vanilla SGD in Section 3.1. Therefore, we can locally accumulate the velocity
ut instead of the real gradient Ok,t to migrate Equation 5 to approach Equation 3:

uk,t = muk,t�1 + Ok,t, vk,t = vk,t�1 + uk,t, wt+1 = wt � ⌘

NX

k=1

sparse (vk,t) (7)

where the first two terms are the corrected local gradient accumulation, and the accumulation result
vk,t is used for the subsequent sparsification and communication. By this simple change in the local
accumulation, we can deduce the accumulated discounting factor

PT�1
⌧=0 m

⌧ in Equation 4 from
Equation 7, as shown in Figure 2(b).

We refer to this migration as the momentum correction. It is a tweak to the update equation, it
doesn’t incur any hyper parameter. Beyond the vanilla momentum SGD, we also look into Nesterov
momentum SGD in Appendix B, which is similar to momentum SGD.

4

Consider basic momentum in SGD:

Problem: momentum discount not applied correctly after sparse update interval T
(assume sparse gradients propagated after T iterations of SGD)

Published as a conference paper at ICLR 2018

3.2 IMPROVING THE LOCAL GRADIENT ACCUMULATION

Without care, the sparse update will greatly harm convergence when sparsity is extremely high
(Chen et al., 2017). For example, Algorithm 1 incurred more than 1.0% loss of accuracy on the
Cifar10 dataset, as shown in Figure 3(a). We find momentum correction and local gradient clipping
can mitigate this problem.

Momentum Correction Momentum SGD is widely used in place of vanilla SGD. However, Al-
gorithm 1 doesn’t directly apply to SGD with the momentum term, since it ignores the discounting
factor between the sparse update intervals.

Distributed training with vanilla momentum SGD on N training nodes follows (Qian, 1999),

ut = mut�1 +
NX

k=1

(Ok,t) , wt+1 = wt � ⌘ut (3)

where m is the momentum, N is the number of training nodes, and Ok,t =
1
Nb

P
x2Bk,t

Of(x,wt).

Consider the weight value w(i) of i-th position in flattened weights w. After T iterations, the change
in weight value w

(i) shows as follows,

w
(i)
t+T = w

(i)
t � ⌘

"
· · ·+

T�2X

⌧=0

m
⌧

!
O

(i)
k,t+1 +

T�1X

⌧=0

m
⌧

!
O

(i)
k,t

#
(4)

If SGD with the momentum is directly applied to the sparse gradient scenario (line 15 in Algorithm
1), the update rule is no longer equivalent to Equation 3, which becomes:

vk,t = vk,t�1 + Ok,t, ut = mut�1 +
NX

k=1

sparse (vk,t) , wt+1 = wt � ⌘ut (5)

where the first term is the local gradient accumulation on the training node k. Once the accumulation
result vk,t is larger than a threshold, it will pass hard thresholding in the sparse () function, and be
encoded and get sent over the network in the second term. Similarly to the line 12 in Algorithm 1,
the accumulation result vk,t gets cleared by the mask in the sparse () function.

The change in weight value w
(i) after the sparse update interval T becomes,

w
(i)
t+T = w

(i)
t � ⌘

⇣
· · ·+ O

(i)
k,t+1 + O

(i)
k,t

⌘
(6)

The disappearance of the accumulated discounting factor
PT�1

⌧=0 m
⌧ in Equation 6 compared to

Equation 4 leads to the loss of convergence performance. It is illustrated in Figure 2(a), where
Equation 4 drives the optimization from point A to point B, but with local gradient accumulation,
Equation 4 goes to point C. When the gradient sparsity is high, the update interval T dramatically
increases, and thus the significant side effect will harm the model performance. To avoid this error,
we need momentum correction on top of Equation 5 to make sure the sparse update is equivalent to
the dense update as in Equation 3.

If we regard the velocity ut in Equation 3 as ”gradient”, the second term of Equation 3 can be
considered as the vanilla SGD for the ”gradient” ut. The local gradient accumulation is proved to
be effective for the vanilla SGD in Section 3.1. Therefore, we can locally accumulate the velocity
ut instead of the real gradient Ok,t to migrate Equation 5 to approach Equation 3:

uk,t = muk,t�1 + Ok,t, vk,t = vk,t�1 + uk,t, wt+1 = wt � ⌘

NX

k=1

sparse (vk,t) (7)

where the first two terms are the corrected local gradient accumulation, and the accumulation result
vk,t is used for the subsequent sparsification and communication. By this simple change in the local
accumulation, we can deduce the accumulated discounting factor

PT�1
⌧=0 m

⌧ in Equation 4 from
Equation 7, as shown in Figure 2(b).

We refer to this migration as the momentum correction. It is a tweak to the update equation, it
doesn’t incur any hyper parameter. Beyond the vanilla momentum SGD, we also look into Nesterov
momentum SGD in Appendix B, which is similar to momentum SGD.

4

Fix: locally accumulate and communicate gradient velocities, not gradients:

Published as a conference paper at ICLR 2018

3.2 IMPROVING THE LOCAL GRADIENT ACCUMULATION

Without care, the sparse update will greatly harm convergence when sparsity is extremely high
(Chen et al., 2017). For example, Algorithm 1 incurred more than 1.0% loss of accuracy on the
Cifar10 dataset, as shown in Figure 3(a). We find momentum correction and local gradient clipping
can mitigate this problem.

Momentum Correction Momentum SGD is widely used in place of vanilla SGD. However, Al-
gorithm 1 doesn’t directly apply to SGD with the momentum term, since it ignores the discounting
factor between the sparse update intervals.

Distributed training with vanilla momentum SGD on N training nodes follows (Qian, 1999),

ut = mut�1 +
NX

k=1

(Ok,t) , wt+1 = wt � ⌘ut (3)

where m is the momentum, N is the number of training nodes, and Ok,t =
1
Nb

P
x2Bk,t

Of(x,wt).

Consider the weight value w(i) of i-th position in flattened weights w. After T iterations, the change
in weight value w

(i) shows as follows,

w
(i)
t+T = w

(i)
t � ⌘

"
· · ·+

T�2X

⌧=0

m
⌧

!
O

(i)
k,t+1 +

T�1X

⌧=0

m
⌧

!
O

(i)
k,t

#
(4)

If SGD with the momentum is directly applied to the sparse gradient scenario (line 15 in Algorithm
1), the update rule is no longer equivalent to Equation 3, which becomes:

vk,t = vk,t�1 + Ok,t, ut = mut�1 +
NX

k=1

sparse (vk,t) , wt+1 = wt � ⌘ut (5)

where the first term is the local gradient accumulation on the training node k. Once the accumulation
result vk,t is larger than a threshold, it will pass hard thresholding in the sparse () function, and be
encoded and get sent over the network in the second term. Similarly to the line 12 in Algorithm 1,
the accumulation result vk,t gets cleared by the mask in the sparse () function.

The change in weight value w
(i) after the sparse update interval T becomes,

w
(i)
t+T = w

(i)
t � ⌘

⇣
· · ·+ O

(i)
k,t+1 + O

(i)
k,t

⌘
(6)

The disappearance of the accumulated discounting factor
PT�1

⌧=0 m
⌧ in Equation 6 compared to

Equation 4 leads to the loss of convergence performance. It is illustrated in Figure 2(a), where
Equation 4 drives the optimization from point A to point B, but with local gradient accumulation,
Equation 4 goes to point C. When the gradient sparsity is high, the update interval T dramatically
increases, and thus the significant side effect will harm the model performance. To avoid this error,
we need momentum correction on top of Equation 5 to make sure the sparse update is equivalent to
the dense update as in Equation 3.

If we regard the velocity ut in Equation 3 as ”gradient”, the second term of Equation 3 can be
considered as the vanilla SGD for the ”gradient” ut. The local gradient accumulation is proved to
be effective for the vanilla SGD in Section 3.1. Therefore, we can locally accumulate the velocity
ut instead of the real gradient Ok,t to migrate Equation 5 to approach Equation 3:

uk,t = muk,t�1 + Ok,t, vk,t = vk,t�1 + uk,t, wt+1 = wt � ⌘

NX

k=1

sparse (vk,t) (7)

where the first two terms are the corrected local gradient accumulation, and the accumulation result
vk,t is used for the subsequent sparsification and communication. By this simple change in the local
accumulation, we can deduce the accumulated discounting factor

PT�1
⌧=0 m

⌧ in Equation 4 from
Equation 7, as shown in Figure 2(b).

We refer to this migration as the momentum correction. It is a tweak to the update equation, it
doesn’t incur any hyper parameter. Beyond the vanilla momentum SGD, we also look into Nesterov
momentum SGD in Appendix B, which is similar to momentum SGD.

4

[Lin et al. ICLR 2018]

Stanford CS348K, Fall 2018

Summary: training large networks in parallel

▪ Data-parallel training with asynchronous update to efficiently use
clusters of commodity machines with low speed interconnect
- Modification of SGD algorithm to meet constraints of modern parallel systems
- Effects on convergence are problem dependent and not particularly well understood
- Efficient use of fast interconnects may provide alternative to these methods

(facilitate tightly orchestrated solutions much like supercomputing applications)

▪ Modern DNN designs, large minibatch sizes, careful learning rate
schedules enable scalability without asynchronous execution on
commodity clusters

▪ High-performance training of deep networks is an interesting example
of constant iteration of algorithm design and parallelization strategy
(a key theme of this course!)

