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Let’s think about all the 
“rays of light” in this room
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Light-field parameterization
Light field is a 4D function (represents light in free space: no occlusion)

Efficient two-plane parameterization 

Line described by connecting point on (u,v) plane with point on (s,t) plane 

If one of the planes placed at infinity:  point + direction representation 

Levoy/Hanrahan refer to representation as a “light slab”: beam of light entering one 
quadrilateral and exiting another

[Image credit: Levoy and Hanrahan 96]

[Levoy and Hanrahan 96]
[Gortler et al., 96]
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Sampling the light field
U=1

U=0 S=0

S=1

Simplification: only showing lines in 2D 
(full light field is 4D function)
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Sampling the light field by taking pictures

U=1

U=0 S=0

S=1

[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project]
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Stanford Camera Array
640 x 480 tightly synchronized, 
repositionable cameras  

Custom processing board per camera 

Tethered to PCs for additional 
processing/storage

Host PC with 
disk array

[Wilburn et al. 2005]



Stanford CS348K, Fall 2018

Light field storage layouts

[Image credit: Levoy and Hanrahan 96]
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Line-space representation
Each line in Cartesian space* is represented by a point in line space

Cartesian space Line space

* Shown here in 2D, generalizes to 3D Cartesian lines [Image credit: Levoy and Hanrahan 96]
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Pinhole camera

https://civilwar150pinholeproject.com/2013/04/13/pinhole-shutter/
http://brianvds.blogspot.com/2012/08/a-simple-pinhole-camera.html
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Light field inside a pinhole camera

Sensor plane: (X,Y)

Lens aperture plane: 
(U,V)

Pixel P1 Pixel P2

X

U

Ray space plot

Pixel P1 Pixel P2

Pinhole at (0.5, 0.5)

0.5

Scene object 2Scene object 1
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Camera with finite aperture

Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

Scene object 2Scene object 1
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Light field inside a camera

Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

X

U

Ray space plot 
(only showing 2D X-U projection)

Pixel P1 Pixel P2

Scene object 2Scene object 1

Sensor pixels measure integral of energy from all 
rays of light passing through points on the aperture 
and a pixel-sized area of the sensor.
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Decrease aperture size

Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

X

U

Ray space plot

Pixel P1 Pixel P2
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Defocus

Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

X

U

Ray space plot

Pixel P1 Pixel P2

Circle of 
confusion

Previous sensor 
plane location
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Defocus

Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

X

U

Ray space plot

Pixel P1 Pixel P2
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How might we measure the light field inside a camera?

Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

X

U

Ray space plot 
(only showing X-U 2D projection)

Pixel P1 Pixel P2

Scene object 2Scene object 1
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Intuition: handheld light field camera

Lens aperture: (U,V)

World plane of focus

Intuition: build an optical system where 
each region of the sensor “takes” a picture 
of the aperture of the main lens

Sensor plane: (X,Y)

[Ng et al. 2005]
[Adelson and Wang, 1992]
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Handheld light field camera

Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

[Ng et al. 2005]

Implementation: microlens array 
placed just on top of the sensor.

Pixel 1 Pixel 2

[Adelson and Wang, 1992]



Stanford CS348K, Fall 2018

Each sensor pixel records a small beam of light inside the camera

Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

Pixel 1

Ray space plot

X

U
Pixel 1
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Each sensor pixel records a small beam of light inside the camera

Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

Pixel 1

Ray space plot

Pixel 2

X

U
Pixel 1

Pixel 2
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Microlens array

Slide credit: Ren Ng
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Raw data from light field sensor

Slide credit: Ren Ng
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Raw data from light field sensor

One disk image

Slide credit: Ren Ng
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Sub-aperture images
Image from selecting the same pixel under every microlens

Umin

Slide credit: Ren Ng
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Sub-aperture images
Image from selecting the same pixel under every microlens

Umax

Slide credit: Ren Ng
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Computing a photograph from a light field

Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

Pixel 1

X

U

Pixel 1

Pixel 14

Pixel 14

Ray space plot

Computing photograph is integral projection 
(Output image pixel is sum of highlighted light-
field sensor pixels)
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Computing a photograph at a new focal plane

Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

Pixel 1

Ray space plot

Pixel 6

Virtual focal plane

X

U

Computing photograph is integral projection 
(Output image pixel is integral over highlighted 
region: resample)
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x

u

Output image pixel is sum of many sensor pixels

Slide credit: Ren Ng
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Recall: split-pixel sensor

Two pixels under microlens

Image credit: Nikon

Used in cell-phone cameras today to assist with autofocus (also called dual-pixel sensor)
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Virtual reality displays
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Virtual reality (VR) vs augmented reality (AR)
VR = virtual reality 
User is completely immersed in 
virtual world (sees only light 
emitted by display

AR = augmented reality 
Display is an overlay that augments 
user’s normal view of the real world 
(e.g., terminator) 

Image credit: Terminator 2 (naturally)
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VR headsets
Oculus Rift

HTC Vive

Sony Morpheus

Google 
Cardboard

Google 
Daydream

Oculus Go
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AR headsets

Microsoft Hololens

Magic Leap One
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Oculus Rift CV1
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Oculus Rift CV1 headset

Image credit: ifixit.com
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Oculus Rift CV1 headset

Image credit: ifixit.com
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Oculus Rift CV1 headset

Image credit: ifixit.com

1080x1200 OLED display per eye 
(2160 x 1200 total pixels) 
90 Hz refresh rate 
110o field of view
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Role of optics in headset
1. Create wide field of view 
2. Place focal plane at several meters 

away from eye (close to infinity)

field of view

eye

OLED display

Lens diagram from Open Source VR Project (OSVR) 
(Not the lens system from the Oculus Rift) 
http://www.osvr.org/

Note: parallel lines reaching eye 
converge to a single point on display 
(eye accommodates to plane near 
infinity)
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Accommodation and vergence
Accommodation: changing the optical power of the eye to focus at different distances

Eye accommodated 
at far distance

Eye accommodated 
at near distance

Vergence: rotation of eye to ensure projection of object falls in center of retina
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Accommodation - vergence conflict
▪ Given design of current VR displays, consider what happens when 

objects are up-close to eye in virtual scene 
- Eyes must remain accommodated to near infinity (otherwise image on screen 

won’t be in focus) 

- But eyes must converge in attempt to fuse stereoscopic images of object up close 

- Brain receives conflicting depth clues… (discomfort, fatigue, nausea)

This problem stems from nature of display design. If you could just make a display that emits 
the light field that would be produced by a virtual scene, then you could avoid the 
accommodation - vergence conflict…
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Aside: near-eye light field displays
Goal: recreate light field in front of eye
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Oculus CV1 IR camera and IR LEDs

Image credit: ifixit.com

60Hz IR Camera 
(measures absolute position 
of headset 60 times a second)

Headset contains: 
IR LEDs (tracked by camera) 
Gyro + accelerometer (1000Hz) (for rapid relative positioning)
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Acquiring VR content
Google’s Jump VR video: 
Yi Halo Camera (17 cameras)

Facebook Manifold 
(16 8K cameras)
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Stereo, 360-degree viewing
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Stereo, 360-degree viewing
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Measuring light arriving at left eye

[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project]

r

R

sin ✓ = r/R

✓✓
✓

Left eye
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r

R

✓✓
✓

sin ✓ = �r/R

Right eye

Measuring light arriving at right eye
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??

How to estimate rays at “missing” views?
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??

Interpolation to novel views depends on scene depth
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??

Interpolation to novel views depends on scene depth
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Computing depth of scene point from two images
Binocular stereo 3D reconstruction of point P: depth from disparity

P

x x’

ff
b

z

Focal length:  f 
Baseline:  b 
Disparity:  d = x’- x

Simple reconstruction example: cameras aligned (coplanar sensors), separated by known distance, same focal length 
“Disparity” is the distance between object’s projected position in the two images: x - x’



Stanford CS348K, Fall 2018

Microsoft XBox 360 Kinect

Illuminant 
(Infrared Laser + diffuser)

RGB CMOS Sensor 
640x480 (w/ Bayer mosaic) 

Monochrome Infrared 
CMOS Sensor 

(Aptina MT9M001) 
1280x1024 ** 

** Kinect returns 640x480 disparity image, suspect sensor is configured for 2x2 pixel binning down to 640x512, then crop 

Image credit: iFixIt
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Infrared image of Kinect illuminant output
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Infrared image of Kinect illuminant output
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Correspondence problem
How to determine which pairs of pixels in image 1 and image 2 correspond to the 
same scene point?
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Correspondence problem = compute “flow” between 
adjacent cameras
▪ For each pixel in frame from camera i, find closest pixel in camera i+1 
▪ Google’s Jump pipeline uses a coarse-to-fine algorithm: align 32x32 blocks by searching 

over local window, then perform per-pixel alignment 
- Recall: H.264 motion estimation, HDR+ burst alignment (same correspondence 

challenge, but here we are aligning different perspectives at the same time to 
estimate unknown scene depth, not estimating motion of camera or scene over time) 

- Additional tricks to ensure temporal consistency of flow over time (see papers)

(a) (b) (c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 12: Given two images in (a) and (b), our flow algorithm
produces the edge-aware flow field in (c). We visualize each step of
our flow algorithm for a cropped region of these images. For each
non-overlapping tile in image 0 (d) we identify the larger search
area in image 1 (e) and compute a normalized SSD surface (f), from
which we produce a motion estimate and confidence (shown here as
the radius of the circle). Despite this being a stereo pair, significant
vertical motion is visible in (f) due to rolling shutter. With our per-
tile flow and confidence in (g) we perform a per-pixel upsampling
and confidence adjustment to get the proposed flow in (h) (visualized
with saturation / u, hue / v, and value / c1/8, as shown in the
legend in (j)). This noisy and incomplete flow/confidence is fed
into a temporally-consistent bilateral solver to produce the final
edge-aware flow field in (i).

We then extract a subpixel flow estimate from D by fitting a quadratic
to the 3⇥ 3 window surrounding the argmin of D(u, v) and localiz-
ing its minimum:
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where �c = 256 and �A = 5 determine the importance of the SSD
value, and the curvature of SSD, respectively. Ci is large iff the two
tiles match well and the match is well-localized. See Figure 12f for
a visualization of this process.

These per-tile flow and confidence estimates {Ui, Vi, Ci} (shown
in Figure 12g) then undergo a series of heuristic transformations
to model assumptions about outliers, low-texture regions, repeated
texture, object boundaries which do not align with tile boundaries,
and forward/backward symmetry (see the supplementary material for
details). This results in a per-pixel flow/confidence, where for each
pixel i we have ûi as horizontal motion, v̂i as vertical motion, and
ĉi as our estimated confidence of ûi and v̂i (shown in Figure 12h).
This flow field is noisy and incomplete, but the flow estimate tends
to be accurate when the confidence is large. With this, we can use
the bilateral-solver [Barron and Poole 2016] to produce a smoothed
estimate of the flow-field which respects edges in the video sequence,
while resembling our noisy flow estimate in confident regions (shown
in Figure 12i). We use the bilateral solver to solve the following:
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where {ui, vi} is the smoothed flow field estimated by the solver.
The solver contains a smoothness term built around Ŵ , a (bistochas-
tized) bilateral affinity matrix W . To generalize the bilateral solver
to video sequences, we need only modify W to include a tempo-
ral term in addition to the spatial xy and color `uv terms used in
[Barron and Poole 2016]:
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where for each pixel i, p`i is luma, (pui , pvi ) is chroma, (pxi , p
y
i ) is

spatial position, and pti is time (the pixel’s frame in the video se-
quence). The parameters (�` = 16, �uv = 8, �xy = 12, and
�t = 1) determine the size of the luma, chroma, spatial, and tem-
poral support of the solver. This approach of enforcing temporal
consistency by connecting each pixel to its nearby pixels in the
video sequence implicitly reasons about object motion by assuming
motion is small and temporally smooth for images with the same
color, which works well in practice and avoids the need for esti-
mating temporal flow across adjacent frames, as is often required
by other techniques [Lang et al. 2012]. Our approach is similar
to the temporal smoothing technique used in [Meka et al. 2016]
for intrinsic image separation, though that approach relies on using
randomly sampled connections while the bilateral solver gives us
a dense “fully connected” temporal smoothness prior. We solve
the problem in Eq. 12 using the same bilateral-space optimization
approach as presented in [Barron and Poole 2016], but we optimize
over the entire video sequence in a 6-dimensional bilateral-temporal
space, rather than a 5-dimensional space.

2D Flow 
(sat = u, hue = v)

(a) (b) (c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 12: Given two images in (a) and (b), our flow algorithm
produces the edge-aware flow field in (c). We visualize each step of
our flow algorithm for a cropped region of these images. For each
non-overlapping tile in image 0 (d) we identify the larger search
area in image 1 (e) and compute a normalized SSD surface (f), from
which we produce a motion estimate and confidence (shown here as
the radius of the circle). Despite this being a stereo pair, significant
vertical motion is visible in (f) due to rolling shutter. With our per-
tile flow and confidence in (g) we perform a per-pixel upsampling
and confidence adjustment to get the proposed flow in (h) (visualized
with saturation / u, hue / v, and value / c1/8, as shown in the
legend in (j)). This noisy and incomplete flow/confidence is fed
into a temporally-consistent bilateral solver to produce the final
edge-aware flow field in (i).

We then extract a subpixel flow estimate from D by fitting a quadratic
to the 3⇥ 3 window surrounding the argmin of D(u, v) and localiz-
ing its minimum:
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where �c = 256 and �A = 5 determine the importance of the SSD
value, and the curvature of SSD, respectively. Ci is large iff the two
tiles match well and the match is well-localized. See Figure 12f for
a visualization of this process.

These per-tile flow and confidence estimates {Ui, Vi, Ci} (shown
in Figure 12g) then undergo a series of heuristic transformations
to model assumptions about outliers, low-texture regions, repeated
texture, object boundaries which do not align with tile boundaries,
and forward/backward symmetry (see the supplementary material for
details). This results in a per-pixel flow/confidence, where for each
pixel i we have ûi as horizontal motion, v̂i as vertical motion, and
ĉi as our estimated confidence of ûi and v̂i (shown in Figure 12h).
This flow field is noisy and incomplete, but the flow estimate tends
to be accurate when the confidence is large. With this, we can use
the bilateral-solver [Barron and Poole 2016] to produce a smoothed
estimate of the flow-field which respects edges in the video sequence,
while resembling our noisy flow estimate in confident regions (shown
in Figure 12i). We use the bilateral solver to solve the following:
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where {ui, vi} is the smoothed flow field estimated by the solver.
The solver contains a smoothness term built around Ŵ , a (bistochas-
tized) bilateral affinity matrix W . To generalize the bilateral solver
to video sequences, we need only modify W to include a tempo-
ral term in addition to the spatial xy and color `uv terms used in
[Barron and Poole 2016]:

Wi,j = exp
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where for each pixel i, p`i is luma, (pui , pvi ) is chroma, (pxi , p
y
i ) is

spatial position, and pti is time (the pixel’s frame in the video se-
quence). The parameters (�` = 16, �uv = 8, �xy = 12, and
�t = 1) determine the size of the luma, chroma, spatial, and tem-
poral support of the solver. This approach of enforcing temporal
consistency by connecting each pixel to its nearby pixels in the
video sequence implicitly reasons about object motion by assuming
motion is small and temporally smooth for images with the same
color, which works well in practice and avoids the need for esti-
mating temporal flow across adjacent frames, as is often required
by other techniques [Lang et al. 2012]. Our approach is similar
to the temporal smoothing technique used in [Meka et al. 2016]
for intrinsic image separation, though that approach relies on using
randomly sampled connections while the bilateral solver gives us
a dense “fully connected” temporal smoothness prior. We solve
the problem in Eq. 12 using the same bilateral-space optimization
approach as presented in [Barron and Poole 2016], but we optimize
over the entire video sequence in a 6-dimensional bilateral-temporal
space, rather than a 5-dimensional space.

Image credit: Andersen et al. 2016
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Left eye: with interpolated rays 

[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project]
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Omnidirectional stereo (ODS) representation
▪ Unique panorama of size W x H for left and right eye 

▪ Good: can be saved, compressed, edited as normal video 

▪ Column j of pixels corresponds to column from interpolated 
camera at ring position at angle: 2⇡j

W

Figure 18: Still stereo frames taken from several stitches, represented here as anaglyphs.

Image credit: Andersen et al. 2016

Overlay of Left and Right eye ODS panoramas
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“Casual 3D photography”
▪ Acquisition: wave a smartphone camera around to acquire images 

of scene from multiple viewpoints 

▪ Processing: construct 3D representation of scene from photos 
- Render a textured triangle mesh

Dual-camera 
Smartphone

Burst of photos 
+ depth maps

Stitch photos into depth panorama, 
create 3D mesh + textures, 
render during VR viewing


