
Visual Computing Systems
Stanford CS348K, Fall 2018

Lecture 7:

The Light Field,
and Capture for VR

Stanford CS348K, Fall 2018

Let’s think about all the
“rays of light” in this room

Stanford CS348K, Fall 2018

Light-field parameterization
Light field is a 4D function (represents light in free space: no occlusion)

Efficient two-plane parameterization

Line described by connecting point on (u,v) plane with point on (s,t) plane

If one of the planes placed at infinity: point + direction representation

Levoy/Hanrahan refer to representation as a “light slab”: beam of light entering one
quadrilateral and exiting another

[Image credit: Levoy and Hanrahan 96]

[Levoy and Hanrahan 96]
[Gortler et al., 96]

Stanford CS348K, Fall 2018

Sampling the light field
U=1

U=0 S=0

S=1

Simplification: only showing lines in 2D
(full light field is 4D function)

Stanford CS348K, Fall 2018

Sampling the light field by taking pictures

U=1

U=0 S=0

S=1

[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project]

Stanford CS348K, Fall 2018

Stanford Camera Array
640 x 480 tightly synchronized,
repositionable cameras

Custom processing board per camera

Tethered to PCs for additional
processing/storage

Host PC with
disk array

[Wilburn et al. 2005]

Stanford CS348K, Fall 2018

Light field storage layouts

[Image credit: Levoy and Hanrahan 96]

Stanford CS348K, Fall 2018

Line-space representation
Each line in Cartesian space* is represented by a point in line space

Cartesian space Line space

* Shown here in 2D, generalizes to 3D Cartesian lines [Image credit: Levoy and Hanrahan 96]

Stanford CS348K, Fall 2018

Pinhole camera

https://civilwar150pinholeproject.com/2013/04/13/pinhole-shutter/
http://brianvds.blogspot.com/2012/08/a-simple-pinhole-camera.html

Stanford CS348K, Fall 2018

Light field inside a pinhole camera

Sensor plane: (X,Y)

Lens aperture plane:
(U,V)

Pixel P1 Pixel P2

X

U

Ray space plot

Pixel P1 Pixel P2

Pinhole at (0.5, 0.5)

0.5

Scene object 2Scene object 1

Stanford CS348K, Fall 2018

Camera with finite aperture

Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

Scene object 2Scene object 1

Stanford CS348K, Fall 2018

Light field inside a camera

Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

X

U

Ray space plot
(only showing 2D X-U projection)

Pixel P1 Pixel P2

Scene object 2Scene object 1

Sensor pixels measure integral of energy from all
rays of light passing through points on the aperture
and a pixel-sized area of the sensor.

Stanford CS348K, Fall 2018

Decrease aperture size

Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

X

U

Ray space plot

Pixel P1 Pixel P2

Stanford CS348K, Fall 2018

Defocus

Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

X

U

Ray space plot

Pixel P1 Pixel P2

Circle of
confusion

Previous sensor
plane location

Stanford CS348K, Fall 2018

Defocus

Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

X

U

Ray space plot

Pixel P1 Pixel P2

Stanford CS348K, Fall 2018

How might we measure the light field inside a camera?

Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

X

U

Ray space plot
(only showing X-U 2D projection)

Pixel P1 Pixel P2

Scene object 2Scene object 1

Stanford CS348K, Fall 2018

Intuition: handheld light field camera

Lens aperture: (U,V)

World plane of focus

Intuition: build an optical system where
each region of the sensor “takes” a picture
of the aperture of the main lens

Sensor plane: (X,Y)

[Ng et al. 2005]
[Adelson and Wang, 1992]

Stanford CS348K, Fall 2018

Handheld light field camera

Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

[Ng et al. 2005]

Implementation: microlens array
placed just on top of the sensor.

Pixel 1 Pixel 2

[Adelson and Wang, 1992]

Stanford CS348K, Fall 2018

Each sensor pixel records a small beam of light inside the camera

Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

Pixel 1

Ray space plot

X

U
Pixel 1

Stanford CS348K, Fall 2018

Each sensor pixel records a small beam of light inside the camera

Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

Pixel 1

Ray space plot

Pixel 2

X

U
Pixel 1

Pixel 2

Stanford CS348K, Fall 2018

Microlens array

Slide credit: Ren Ng

Stanford CS348K, Fall 2018

Raw data from light field sensor

Slide credit: Ren Ng

Stanford CS348K, Fall 2018

Raw data from light field sensor

One disk image

Slide credit: Ren Ng

Stanford CS348K, Fall 2018

Sub-aperture images
Image from selecting the same pixel under every microlens

Umin

Slide credit: Ren Ng

Stanford CS348K, Fall 2018

Sub-aperture images
Image from selecting the same pixel under every microlens

Umax

Slide credit: Ren Ng

Stanford CS348K, Fall 2018

Computing a photograph from a light field

Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

Pixel 1

X

U

Pixel 1

Pixel 14

Pixel 14

Ray space plot

Computing photograph is integral projection
(Output image pixel is sum of highlighted light-
field sensor pixels)

Stanford CS348K, Fall 2018

Computing a photograph at a new focal plane

Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

Pixel 1

Ray space plot

Pixel 6

Virtual focal plane

X

U

Computing photograph is integral projection
(Output image pixel is integral over highlighted
region: resample)

Stanford CS348K, Fall 2018

x

u

Output image pixel is sum of many sensor pixels

Slide credit: Ren Ng

Stanford CS348K, Fall 2018Slide credit: Ren Ng

Stanford CS348K, Fall 2018Slide credit: Ren Ng

Stanford CS348K, Fall 2018Slide credit: Ren Ng

Stanford CS348K, Fall 2018

Recall: split-pixel sensor

Two pixels under microlens

Image credit: Nikon

Used in cell-phone cameras today to assist with autofocus (also called dual-pixel sensor)

Stanford CS348K, Fall 2018

Virtual reality displays

Stanford CS348K, Fall 2018

Virtual reality (VR) vs augmented reality (AR)
VR = virtual reality
User is completely immersed in
virtual world (sees only light
emitted by display

AR = augmented reality
Display is an overlay that augments
user’s normal view of the real world
(e.g., terminator)

Image credit: Terminator 2 (naturally)

Stanford CS348K, Fall 2018

VR headsets
Oculus Rift

HTC Vive

Sony Morpheus

Google
Cardboard

Google
Daydream

Oculus Go

Stanford CS348K, Fall 2018

AR headsets

Microsoft Hololens

Magic Leap One

Stanford CS348K, Fall 2018

Oculus Rift CV1

Stanford CS348K, Fall 2018

Oculus Rift CV1 headset

Image credit: ifixit.com

Stanford CS348K, Fall 2018

Oculus Rift CV1 headset

Image credit: ifixit.com

Stanford CS348K, Fall 2018

Oculus Rift CV1 headset

Image credit: ifixit.com

1080x1200 OLED display per eye
(2160 x 1200 total pixels)
90 Hz refresh rate
110o field of view

Stanford CS348K, Fall 2018

Role of optics in headset
1. Create wide field of view
2. Place focal plane at several meters

away from eye (close to infinity)

field of view

eye

OLED display

Lens diagram from Open Source VR Project (OSVR)
(Not the lens system from the Oculus Rift)
http://www.osvr.org/

Note: parallel lines reaching eye
converge to a single point on display
(eye accommodates to plane near
infinity)

Stanford CS348K, Fall 2018

Accommodation and vergence
Accommodation: changing the optical power of the eye to focus at different distances

Eye accommodated
at far distance

Eye accommodated
at near distance

Vergence: rotation of eye to ensure projection of object falls in center of retina

Stanford CS348K, Fall 2018

Accommodation - vergence conflict
▪ Given design of current VR displays, consider what happens when

objects are up-close to eye in virtual scene
- Eyes must remain accommodated to near infinity (otherwise image on screen

won’t be in focus)

- But eyes must converge in attempt to fuse stereoscopic images of object up close

- Brain receives conflicting depth clues… (discomfort, fatigue, nausea)

This problem stems from nature of display design. If you could just make a display that emits
the light field that would be produced by a virtual scene, then you could avoid the
accommodation - vergence conflict…

Stanford CS348K, Fall 2018

Aside: near-eye light field displays
Goal: recreate light field in front of eye

Stanford CS348K, Fall 2018

Oculus CV1 IR camera and IR LEDs

Image credit: ifixit.com

60Hz IR Camera
(measures absolute position
of headset 60 times a second)

Headset contains:
IR LEDs (tracked by camera)
Gyro + accelerometer (1000Hz) (for rapid relative positioning)

Stanford CS348K, Fall 2018

Acquiring VR content
Google’s Jump VR video:
Yi Halo Camera (17 cameras)

Facebook Manifold
(16 8K cameras)

Stanford CS348K, Fall 2018

Stereo, 360-degree viewing

Stanford CS348K, Fall 2018

Stereo, 360-degree viewing

Stanford CS348K, Fall 2018

Measuring light arriving at left eye

[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project]

r

R

sin ✓ = r/R

✓✓
✓

Left eye

Stanford CS348K, Fall 2018[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project]

r

R

✓✓
✓

sin ✓ = �r/R

Right eye

Measuring light arriving at right eye

Stanford CS348K, Fall 2018[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project]

??

How to estimate rays at “missing” views?

Stanford CS348K, Fall 2018[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project]

??

Interpolation to novel views depends on scene depth

Stanford CS348K, Fall 2018[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project]

??

Interpolation to novel views depends on scene depth

Stanford CS348K, Fall 2018

Computing depth of scene point from two images
Binocular stereo 3D reconstruction of point P: depth from disparity

P

x x’

ff
b

z

Focal length: f
Baseline: b
Disparity: d = x’- x

Simple reconstruction example: cameras aligned (coplanar sensors), separated by known distance, same focal length
“Disparity” is the distance between object’s projected position in the two images: x - x’

Stanford CS348K, Fall 2018

Microsoft XBox 360 Kinect

Illuminant
(Infrared Laser + diffuser)

RGB CMOS Sensor
640x480 (w/ Bayer mosaic)

Monochrome Infrared
CMOS Sensor

(Aptina MT9M001)
1280x1024 **

** Kinect returns 640x480 disparity image, suspect sensor is configured for 2x2 pixel binning down to 640x512, then crop

Image credit: iFixIt

Stanford CS348K, Fall 2018
Credit: www.futurepicture.org

Infrared image of Kinect illuminant output

Stanford CS348K, Fall 2018
Credit: www.futurepicture.org

Infrared image of Kinect illuminant output

Stanford CS348K, Fall 2018

Correspondence problem
How to determine which pairs of pixels in image 1 and image 2 correspond to the
same scene point?

Stanford CS348K, Fall 2018

Correspondence problem = compute “flow” between
adjacent cameras
▪ For each pixel in frame from camera i, find closest pixel in camera i+1
▪ Google’s Jump pipeline uses a coarse-to-fine algorithm: align 32x32 blocks by searching

over local window, then perform per-pixel alignment
- Recall: H.264 motion estimation, HDR+ burst alignment (same correspondence

challenge, but here we are aligning different perspectives at the same time to
estimate unknown scene depth, not estimating motion of camera or scene over time)

- Additional tricks to ensure temporal consistency of flow over time (see papers)

(a) (b) (c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 12: Given two images in (a) and (b), our flow algorithm
produces the edge-aware flow field in (c). We visualize each step of
our flow algorithm for a cropped region of these images. For each
non-overlapping tile in image 0 (d) we identify the larger search
area in image 1 (e) and compute a normalized SSD surface (f), from
which we produce a motion estimate and confidence (shown here as
the radius of the circle). Despite this being a stereo pair, significant
vertical motion is visible in (f) due to rolling shutter. With our per-
tile flow and confidence in (g) we perform a per-pixel upsampling
and confidence adjustment to get the proposed flow in (h) (visualized
with saturation / u, hue / v, and value / c1/8, as shown in the
legend in (j)). This noisy and incomplete flow/confidence is fed
into a temporally-consistent bilateral solver to produce the final
edge-aware flow field in (i).

We then extract a subpixel flow estimate from D by fitting a quadratic
to the 3⇥ 3 window surrounding the argmin of D(u, v) and localiz-
ing its minimum:

D(u, v) ⇡ 1
2
[u v]Ai

u
v

�
+ bT

i

u
v

�
+ ci (9)

(Ui, Vi) = �A�1
i bi (10)

We can also use this quadratic to produce a confidence for tile i:

Ci = exp

✓
log |Ai|

�A
� ci

�2
c

◆
(11)

where �c = 256 and �A = 5 determine the importance of the SSD
value, and the curvature of SSD, respectively. Ci is large iff the two
tiles match well and the match is well-localized. See Figure 12f for
a visualization of this process.

These per-tile flow and confidence estimates {Ui, Vi, Ci} (shown
in Figure 12g) then undergo a series of heuristic transformations
to model assumptions about outliers, low-texture regions, repeated
texture, object boundaries which do not align with tile boundaries,
and forward/backward symmetry (see the supplementary material for
details). This results in a per-pixel flow/confidence, where for each
pixel i we have ûi as horizontal motion, v̂i as vertical motion, and
ĉi as our estimated confidence of ûi and v̂i (shown in Figure 12h).
This flow field is noisy and incomplete, but the flow estimate tends
to be accurate when the confidence is large. With this, we can use
the bilateral-solver [Barron and Poole 2016] to produce a smoothed
estimate of the flow-field which respects edges in the video sequence,
while resembling our noisy flow estimate in confident regions (shown
in Figure 12i). We use the bilateral solver to solve the following:

minimize
{ui,vi}

�
2

P
i,j

Ŵi,j

����

ui

vi

�
�

uj

vj

�����
2

2

+
P
i
ĉi

����

ui

vi

�
�

ûi

v̂i

�����
2

2
(12)

where {ui, vi} is the smoothed flow field estimated by the solver.
The solver contains a smoothness term built around Ŵ , a (bistochas-
tized) bilateral affinity matrix W . To generalize the bilateral solver
to video sequences, we need only modify W to include a tempo-
ral term in addition to the spatial xy and color `uv terms used in
[Barron and Poole 2016]:

Wi,j = exp

�
(p`i � p`j)

2

2�2
l

�
��[pui , pvi]� [puj , p

v
j]
��2
2

2�2
uv

�
��[pxi , pyi]� [pxj , p

y
j]
��2
2

2�2
xy

�
(pti � ptj)

2

2�2
t

!
(13)

where for each pixel i, p`i is luma, (pui , pvi) is chroma, (pxi , p
y
i) is

spatial position, and pti is time (the pixel’s frame in the video se-
quence). The parameters (�` = 16, �uv = 8, �xy = 12, and
�t = 1) determine the size of the luma, chroma, spatial, and tem-
poral support of the solver. This approach of enforcing temporal
consistency by connecting each pixel to its nearby pixels in the
video sequence implicitly reasons about object motion by assuming
motion is small and temporally smooth for images with the same
color, which works well in practice and avoids the need for esti-
mating temporal flow across adjacent frames, as is often required
by other techniques [Lang et al. 2012]. Our approach is similar
to the temporal smoothing technique used in [Meka et al. 2016]
for intrinsic image separation, though that approach relies on using
randomly sampled connections while the bilateral solver gives us
a dense “fully connected” temporal smoothness prior. We solve
the problem in Eq. 12 using the same bilateral-space optimization
approach as presented in [Barron and Poole 2016], but we optimize
over the entire video sequence in a 6-dimensional bilateral-temporal
space, rather than a 5-dimensional space.

2D Flow
(sat = u, hue = v)

(a) (b) (c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 12: Given two images in (a) and (b), our flow algorithm
produces the edge-aware flow field in (c). We visualize each step of
our flow algorithm for a cropped region of these images. For each
non-overlapping tile in image 0 (d) we identify the larger search
area in image 1 (e) and compute a normalized SSD surface (f), from
which we produce a motion estimate and confidence (shown here as
the radius of the circle). Despite this being a stereo pair, significant
vertical motion is visible in (f) due to rolling shutter. With our per-
tile flow and confidence in (g) we perform a per-pixel upsampling
and confidence adjustment to get the proposed flow in (h) (visualized
with saturation / u, hue / v, and value / c1/8, as shown in the
legend in (j)). This noisy and incomplete flow/confidence is fed
into a temporally-consistent bilateral solver to produce the final
edge-aware flow field in (i).

We then extract a subpixel flow estimate from D by fitting a quadratic
to the 3⇥ 3 window surrounding the argmin of D(u, v) and localiz-
ing its minimum:

D(u, v) ⇡ 1
2
[u v]Ai

u
v

�
+ bT

i

u
v

�
+ ci (9)

(Ui, Vi) = �A�1
i bi (10)

We can also use this quadratic to produce a confidence for tile i:

Ci = exp

✓
log |Ai|

�A
� ci

�2
c

◆
(11)

where �c = 256 and �A = 5 determine the importance of the SSD
value, and the curvature of SSD, respectively. Ci is large iff the two
tiles match well and the match is well-localized. See Figure 12f for
a visualization of this process.

These per-tile flow and confidence estimates {Ui, Vi, Ci} (shown
in Figure 12g) then undergo a series of heuristic transformations
to model assumptions about outliers, low-texture regions, repeated
texture, object boundaries which do not align with tile boundaries,
and forward/backward symmetry (see the supplementary material for
details). This results in a per-pixel flow/confidence, where for each
pixel i we have ûi as horizontal motion, v̂i as vertical motion, and
ĉi as our estimated confidence of ûi and v̂i (shown in Figure 12h).
This flow field is noisy and incomplete, but the flow estimate tends
to be accurate when the confidence is large. With this, we can use
the bilateral-solver [Barron and Poole 2016] to produce a smoothed
estimate of the flow-field which respects edges in the video sequence,
while resembling our noisy flow estimate in confident regions (shown
in Figure 12i). We use the bilateral solver to solve the following:

minimize
{ui,vi}

�
2

P
i,j

Ŵi,j

����

ui

vi

�
�

uj

vj

�����
2

2

+
P
i
ĉi

����

ui

vi

�
�

ûi

v̂i

�����
2

2
(12)

where {ui, vi} is the smoothed flow field estimated by the solver.
The solver contains a smoothness term built around Ŵ , a (bistochas-
tized) bilateral affinity matrix W . To generalize the bilateral solver
to video sequences, we need only modify W to include a tempo-
ral term in addition to the spatial xy and color `uv terms used in
[Barron and Poole 2016]:

Wi,j = exp

�
(p`i � p`j)

2

2�2
l

�
��[pui , pvi]� [puj , p

v
j]
��2
2

2�2
uv

�
��[pxi , pyi]� [pxj , p

y
j]
��2
2

2�2
xy

�
(pti � ptj)

2

2�2
t

!
(13)

where for each pixel i, p`i is luma, (pui , pvi) is chroma, (pxi , p
y
i) is

spatial position, and pti is time (the pixel’s frame in the video se-
quence). The parameters (�` = 16, �uv = 8, �xy = 12, and
�t = 1) determine the size of the luma, chroma, spatial, and tem-
poral support of the solver. This approach of enforcing temporal
consistency by connecting each pixel to its nearby pixels in the
video sequence implicitly reasons about object motion by assuming
motion is small and temporally smooth for images with the same
color, which works well in practice and avoids the need for esti-
mating temporal flow across adjacent frames, as is often required
by other techniques [Lang et al. 2012]. Our approach is similar
to the temporal smoothing technique used in [Meka et al. 2016]
for intrinsic image separation, though that approach relies on using
randomly sampled connections while the bilateral solver gives us
a dense “fully connected” temporal smoothness prior. We solve
the problem in Eq. 12 using the same bilateral-space optimization
approach as presented in [Barron and Poole 2016], but we optimize
over the entire video sequence in a 6-dimensional bilateral-temporal
space, rather than a 5-dimensional space.

Image credit: Andersen et al. 2016

Stanford CS348K, Fall 2018

Left eye: with interpolated rays

[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project]

Stanford CS348K, Fall 2018

Omnidirectional stereo (ODS) representation
▪ Unique panorama of size W x H for left and right eye

▪ Good: can be saved, compressed, edited as normal video

▪ Column j of pixels corresponds to column from interpolated
camera at ring position at angle: 2⇡j

W

Figure 18: Still stereo frames taken from several stitches, represented here as anaglyphs.

Image credit: Andersen et al. 2016

Overlay of Left and Right eye ODS panoramas

Stanford CS348K, Fall 2018

“Casual 3D photography”
▪ Acquisition: wave a smartphone camera around to acquire images

of scene from multiple viewpoints

▪ Processing: construct 3D representation of scene from photos
- Render a textured triangle mesh

Dual-camera
Smartphone

Burst of photos
+ depth maps

Stitch photos into depth panorama,
create 3D mesh + textures,
render during VR viewing

