Lecture 6:

Lossy Image and Video
Compression

Visual Computing Systems
Stanford C5348K, Fall 2018

Image Compression

Stanford (S348K, Fall 2018

)
D Dot Dot

4032 x 3024 pixels x (3 bytes/pixel) = 34.9 MB uncompressed image
JPG compressed image = 2.9 MB

ldea 1:

B (. What is the most efficient way to encode intensity values as
a byte?

m A. Encode based on how the brain perceives brightness not,
based on actual response of eye

Stanford (S348K, Fall 2018

Lightness (perceived brightness) aka luma

? O
Lightness (L*) <—— Luminance(Y) = % /\j\

(Perceived by brain) (Response of eye) e’]
Spectral sensitivity of eye Radiance
A (eye’s response curve) (energy spectrum
from scene)

Dark adapted eye: L* x Y 04
Bright adapted eye: L#* o Y05

In a dark room, you turn on a light with luminance: Y;
You turn on a second light that is identical to the first. Total output is now: Y, = 2Y;

Total output appears 2”4 = 1.319 times brighter to dark-adapted human

Note: Lightness (L*) is often referred to as luma (Y’)
Stanford C5348K, Fall 2018

Consider an image with pixel values encoding
luminance (linear in energy hitting sensor)

| % = Y45

Consider 12-bit sensor pixel:
Can represent 4096 unique luminance values
in output image

Values are ~ linear in luminance since they
represent the sensor’s response

A
1
/
/
0.75F
x, -
a
(7]
(<))
= rd
— /
o
S 7
=2 05T
=
w 3
=
T —F
]
S 1 /
=
K
0.25f /
1»'l
|
+ ? i —
0| 0.25 0.5 0.75

Luminance (Y)

Stanford (S348K, Fall 2018

Problem: quantization error

Many common image formats store 8 bits per channel (256 unique values)
Insufficient precision to represent brightness in darker regions of image

A

/

0.751

Perceived brightness: L*

n.2sf /

- . .

| % = Y45

Bright regions of image: perceived difference between
pixels that differ by one step in luminance is small!
(human may not even be able to perceive difference
between pixels that differ by one step in luminance!)

Dark regions of image: perceived difference between
pixels that differ by one step in luminance is large!
(quantization error: gradients in luminance will not
appear smooth.)

- o
13 - -

.......

Luminance (Y)

o
1 -

Rule of thumb: human eye cannot differentiate <1% differences in luminance

Stanford (S348K, Fall 2018

Store lightness, not luminance

|dea: distribute representable pixel values evenly with respect to perceived brightness,
not evenly in luminance (make more efficient use of available bits)

1 I

0.75r

Perceived brightness: L*

0.25t /

...........

Luminance (Y)

Solution: pixel stores Y045
Must compute (pixel_value)22 prior to display on LCD

Warning: must take caution with subsequent
pixel processing operations once pixels are
encoded in a space that is not linear in
luminance.

e.g., When adding images should you add pixel

values that are encoded as lightness or as
luminance?

Stanford (S348K, Fall 2018

|dea 2:

B Chrominance (“chroma”) subsampling

B The human visual system is less sensitive to detail in
chromaticity than in luminance

- Soitis sufficient to sample chroma at a lower rate

Stanford (S348K, Fall 2018

Y'ChCr color space

Y’ = luma: perceived luminance (non-linear)
Cb = blue-yellow deviation from gray
Cr =red-cyan deviation from gray

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Non-linear RGB
(primed notation indicates
perceptual (non-linear) space)

Conversion from R'G'B’ to Y'Cbh(Cr:
65.738- R, 129.057-G, 25.064- B,

Y — 16
+ 056 %6 256
- _37.945. R, TA494.G, 112.439- B,
Cp= 128+ %6 956 956
- 112439- R, 94.154-G), 18.285- B,
Cr= 128+ %6 %6 256

Image credit: Wikipedia Stanford (S348K, Fall 2018

Example: compression in Y'ChCr

Original picture of Kayvon

Stanford (S348K, Fall 2018

Example: compression in Y'ChCr

Contents of ChCr color channels downsampled by a factor of 20 in each dimension

(400x reduction in number of samples)
Stanford (5348K, Fall 2018

Example: compression in Y'ChCr

«
v - ’
7 A i
T e \
= ’ = p -)
-
- g -
7 = > g
/ e ad > /
b o T J ’.
N /,‘//’ ‘ Py
" -~ - - &S w -
A - ~ % » \
e -

\!
AN
.« / . ‘.l

Full resolution sampling of luma (Y’)

Stanford (S348K, Fall 2018

Example: compression in Y'ChCr

Reconstructed result
(looks pretty good)

Stanford (S348K, Fall 2018

Chroma subsampling

Y'ChCr is an efficient representation for storage (and transmission) because Y’ can be
stored at higher resolution than ChCr without significant loss in perceived visual quality

Y 0o Y'10 Y'2 Y'30 Yoo Y'10 Y2 Y'30
Choo Chyo Choo Chao

Croo Cra0 Croo Cra0

Y01 Y1 Y Y's; Yo Y1 Y’ Y
Cho; Ch;;

Cro1 Crz1

4:2:2 representation: 4:2:0 representation:

Store Y’ at full resolution
Store Ch, Cr at full vertical resolution,
but only half horizontal resolution

Store Y’ at full resolution
Store Ch, Cr at half resolution in both
dimensions

Real-world 4:2:0 examples:
most JPG images and H.264 video
Blue-Ray

X:Y:Z notation:
X = width of block

Y = number of chroma samples in first row
Z = number of chroma samples in second row

Stanford (S348K, Fall 2018

|dea 3:

m Low frequency content is predominant in the real world

B The human visual system is less sensitive to high frequency
sources of error in images

B 50 agood compression scheme needs to accurately represent
lower frequencies, but it can be acceptable to sacrifice
accuracy in representing higher frequencies

Stanford (S348K, Fall 2018

Recall: frequency content of images

Spatial domain result Spectrum

Stanford (S348K, Fall 2018

Recall: frequency content of images

Spatial domain result Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude

Stanford (S348K, Fall 2018

Recall: frequency content of images

Spatial domain result Spectrum (after high-pass filter)
(strongest edges) All frequencies below threshold
have 0 magnitude

Stanford (S348K, Fall 2018

e ‘-n"_?w

Wit

t

12
y - 4 ¥
NN

S

o =
5 5
(5
T

TR

oy
b -4
Ryt

#od

What is a good representation for
manipulating frequency content of images?

v
(1
o0
L™
~—’
-d
Q.
)

Hint;

Stanford (S348K, Fall 2018

Image transform coding via discrete cosign
transform (DCT)

64 basis coefficients 64 cosine basis vectors
(each vector is 8x8 image)

8x8 pixel block
(64 coefficients of signal in
“pixel basis”)
,) 1
l basis[i, j] = cos [WN (a: + 5
[0,0]

—415 =30 —61 27 56 -20 -2 O
4 =22 —61 10 13 =7 -9 5

i
m L. I _L-
Lo (R KA 0 e
I Rl il 1 -
(] o o] =
| | O
u Ll I- | 5

i

-47 T TT =25 =29 10 5 -6 -
_ —49 12 34 -15 -10 6 2 2 -
— 12 -7 -13 -4 -2 2 -3 3 —
-3 3 2 -6 -2 1 2

]

4
-1 0 0 -2 -1 -3 4
0 0 -1 -4 -1 0 1

o
L

X<
I I e
LLUNLLLIELE E

(e .

In practice: DCT applied to 8x8 pixel blocks of Y’ channel, 16x16 pixel blocks of Ch, Cr (assuming 4:2:0)

Stanford (S348K, Fall 2018

Examples of other bases

This slide illustrates basis images for 4x4 image block

u u u
Pixel Basis
(Compact: each coefficient in n u n
representation only effects a
single pixel of output)
n u n
u H n

Tl Talnli
- e
=o=m D=

Walsh-Hadamard

[Image credit: https://people.xiph.org/~xiphmont/demo/daala/demo3.shtml]

Haar Wavelet

Stanford (S348K, Fall 2018

Quantization

—-415 -30 —-61 27 56 =20 -2 0O
4 =22 -61 10 13 =7 =9 5
-47 7 =25 =29 10 5 -6
—-49 12 34 -15 =10 6 2 2
12 -7 -13 -4 -2 2 -3 3
-3 2 -6 =2 1 "

3 4

-1 0 0 -2 -1 -3 4 -1

0 0 -1 -4 -1 0 1
Result of DCT

(representation of image in cosine basis)

2% -3 6 2 2 -1 0 0
0 -2 —4 1 1 0 00
-3 1 5 =1 -1 0 00
4 1 2 =1 0 0 00
— 1 0 0 0 0 0 00
0 0 0 0 0 0 00
0 0 0 0 0 0 00
0 0 0 0 0 0 00

16 11 10 16 24 40 51 61
12 12 14 19 26 53 60))l
14 13 16 24 40 57 69 56
14 17 22 29 51 387 80 62
18 22 37 56 63 109 103 77
24 35 55 64 381 104 113 92|
49 64 78 87 103 121 120 101
72 92 95 93 112 100 103 99

Quantization Matrix

Changing JPEG quality setting in your favorite photo app
modifies this matrix (“lower quality” = higher values for
elements in quantization matrix)

JPEG Options

Matte: = None v - OK
— Image Options Cancel
Quality: |9 | | High i
vy o H Preview
amall file large fila
836.3K

Quantization produces small values for coefficients (only few bits needed per coefficient)

Quantization zeros out many coefficients

[Credit: Pat Hanrahan]

Slide credit: Wikipedia, Pat Hanrahan
Stanford (5348K, Fall 2018

JPEG compression artifacts

Noticeable 8x8 pixel block boundaries

Noticeable error near high gradients

Low Quality —— L Medium Quality

"

Low-frequency regions of image represented accurately even under high compression = .0 108

JPEG compression artifacts

a

Original Image
(actual size)

- [] ' o .

Original Image Quality Level 9 Quality Level 6

Why might JPEG compression not
be a good compression scheme for
illustrations and rasterized text?

Quality Level 3 Quality Level 1

Stanford (S348K, Fall 2018

Images with high frequency content do

not exhibit as high compression ratios.
Why?

Original image: 2.9MB JPG

Medium noise: 22.6 MB JPG

High noise: 28.9 MB JPG

Photoshop JPG compression level =10
used for all compressed images

Uncompressed image:
4032 x 3024 x 24 bytes/pixel = 36.6 MB

Stanford (S348K, Fall 2018

Lossless compression of quantized DCT values

2% -3 —6 2 2 -1 0 0 | —I
0 -2 -4 1 1 0 00 V. Va Va
3 1 5 -1 -1 0 00 'J _[|
4 1 2 -1 .0 0 00 %
1 0 0 0 0 0 00 ' _I
0 0 0 0 0 0 00 |
0 0 0 0 0 0 00 v '
L0 0 0 0 0 0 00 -
Quantized DCT Values

Entropy encoding: (lossless) | _l ‘ _l | _l "'_I

Reorderin
Reorder values 9

Run-length encode (RLE) 0s

Huffman encode non-zero values

Image credit: Wikipedia Stanford (S348K, Fall 2018

JPEG compression summary

—415 —-30 —61 27 56 =20 -2 O] (16 11 10 16 24 40 51 61
4 -22 -61 10 13 -7 =9 5 12 12 14 19 26 583 60 55
—47 7 7 =25 =29 10 5 -6 14 13 16 24 40 57 69 56
49 12 34 -15 =10 6 2 2| f |14 17 22 20 51 87 30 62
12 -7 =13 -4 -2 2 -3 3 18 22 37 56 63 109 103 77
-3 3 2 -6 =2 1 4 2 24 35 55 64 31 104 113 92
-1 0 0 -2 -1 -3 4 -1 49 64 73 37 103 121 120 101
0 0 -1 -4 -1 0 1 2] 72 92 95 93 112 100 103 99
DCT Quantization Matrix
A] I Quantization loses information
-3 1 5 -1 -1 0 0o0f 4"~ (lossy compression!)
— -4 1 2 -1 0 0 00
- 1 0 0 0 0 0 00O
0 o 0 0 0 0 00
0 o 0 0 0 0 0 0
0 o 0 0 0 0 00

Quantized DCT

N
N

/. - ~

RLE compression of zeros

ANERN

. —— > Compressed bits
Entropy compression of

Zall non-zeros

)) - y
> Lossless compression!
Coefficient reordering

ANERN

NININNNNNL
ANNNNNN

SO AN

NANANANANANANA
SO

ANIININ

1N

Credit: Pat Hanrahan Stanford (S348K, Fall 2018

JPEG compression summary

Convert image to Y'ChCr
Downsample ChCr (to 4:2:2 or 4:2:0) (information loss occurs here)
For each color channel (Y, Ch, Cr):
For each 8x8 block of values
Compute DCT

Quantize results (information loss occurs here)
Reorder values

Run-length encode 0-spans
Huffman encode non-zero values

Stanford (S348K, Fall 2018

Key idea: exploit characteristics of human
perception to build efficient image storage and
Image processing systems

m Separation of luminance from chrominance in color representation (Y'CrCh)
allows reduced resolution in chrominance channels (4:2:0)

B Encode pixel values linearly in lightness (perceived brightness), not in
luminance (distribute representable values uniformly in perceptual space)

m JPEG compression significantly reduces file size at cost of quantization error
in high spatial frequencies

- Human brain is more tolerant of errors in high frequency image
components than in low frequency ones

- Images of the real world are dominated by low-frequency components

Stanford (S348K, Fall 2018

H.264 Video Compression

Stanford (S348K, Fall 2018

Example video

30 second video: 1920 x 1080, @ 30fps

After decode: 8-bits per channel RGB — 24 bits/pixel = 6.2MB/frame
(6.2 MB * 30 sec* 30 fps = 5.2 GB)
Size of data when each frames stored as JPG: ‘531MB
Actual H.264 video file size: 65.4 MB (80-to-1 compression ratio, 8-to-1 compared to JPG)
Compression/encoding performed in real time on my iPhone

Stanford (S348K, Fall 2018

H.264/AVC video compression

m AV(C=advanced video coding
m Also called MPEG4 Part 10

® Common format in many modern HD video applications:
- Blue Ray

- HD streaming video on internet (Youtube, Vimeo, iTunes store, etc.)

- HD video recorded by your smart phone
- European broadcast HDTV (U.S. broadcast HDTV uses MPEG 2)
- Some satellite TV broadcasts (e.g., DirecTV)

m Benefit: much higher compression ratios than MPEG2 or MPEG4
- Alternatively, higher quality video for fixed bit rate

m (osts: higher decoding complexity, substantially higher encoding cost
- ldea: trades off more compute for requiring less bandwidth/storage

Stanford (S348K, Fall 2018

Hardware implementations

m Support for H.264 video encode/decode is provided by fixed-function
hardware on most modern processors (not just mobile devices)

B Hardware encoding/decoding support existed in modern Intel CPUs since
Sandy Bridge (Intel “Quick Sync”)

B Modern operating systems expose hardware encode decode support
through hardware-accelerated APIs

- e.g., DirectShow/DirectX (Windows), AVFoundation (i0S)

Stanford (S348K, Fall 2018

Video container format versus video codec

m Video container (MOV, AVI) bundles media assets

m Video codec: H.264/AVC (MPEG 4 Part 10)

- H.264 standard defines how to represent and decode video
- H.264 does not define how to encode video (this is left up to implementations)
- H.264 has many profiles

- High Profile (HiP): supported by HDV and Blue Ray

Stanford (S348K, Fall 2018

Video compression: main ideas

m Compression is about exploiting redundancy in a signal

- Intra-frame redundancy: value of pixels in neighboring
regions of a frame are good predictor of values for other
pixels in the frame (spatial redundancy)

- Inter-frame redundancy: pixels from nearby frames in time
are a good predictor for the current frame’s pixels
(temporal redundancy)

Stanford (S348K, Fall 2018

Residual: difference between compressed image and
original image

Compressed pixels Residual
(JPEG quality level 6) (amplified for visualization)

Original pixels

Compressed pixels Residual
(JPEG quality level 2) (amplified for visualization)

Stanford (S348K, Fall 2018

H.264/AVC video compression overview

Source
Video

p
Intra-/Inter-frame

Prediction Model

- J

Previously
Coded Data

Residual
—_—)

" Transform/
Quantize
. Residual

J

Prediction
parameters

Basis

coefficients
—_—

r

&

Entropy
Encoding

\

J

Compressed
Video Stream

Residual: difference between predicted pixel values and input video pixel values

Credit: Figure derived from H.264 Advanced Video Compression Standard, I. Richardson, 2010

Stanford (S348K, Fall 2018

16 x 16 macroblocks

Video frame is partitioned into 16 x 16
pixel macroblocks

Due to 4:2:0 chroma subsampling,
macroblocks correspond to 16 x 16 luma
samples and 8 x 8 chroma samples

Stanford (S348K, Fall 2018

Macroblocks in an image are organized
into slices

Figure to left shows the macro blocks ina
frame

Macroblocks are grouped into slices

Can think of a slice as a sequence of
macroblocks in raster scan order *

Slices can be decoded independently **

One 16x16 macroblock

* H.264 also has non-raster-scan order modes (FMO), will not discuss today.

** Final “deblocking” pass is often applied to post-decode pixel data, so technically slices are not fully independent.

Stanford (S348K, Fall 2018

Decoding via prediction + correction

® During decode, samples in a macroblock are generated by:

1. Making a prediction based on already decoded samples in macroblocks from
the same frame (intra-frame prediction) or from other frames (inter-frame

prediction)

2. Correcting the prediction with a residual stored in the video stream

B Three forms of prediction:

- |-macroblock: macroblock samples predicted from samples in previous
macroblocks in the same slice of the current frame

- P-macroblock: macroblock samples can be predicted from samples from one
other frame (one prediction per macroblock)

- B-macroblock: macroblock samples can be predicted by a weighted combination
of multiple predictions from samples from other frames

Stanford (S348K, Fall 2018

Intra-frame prediction (I-macroblock)

m Prediction of sample values is performed in spatial domain, not transform domain

- Predicting pixel values, not basis coefficients

m Modes for predicting the 16x16 luma (Y) values: *
- Intra_4x4 mode: predict 4x4 block of samples from adjacent row/col of pixels
- Intra_16x16 mode: predict entire 16x16 block of pixels from adjacent row/col

- |_PCM: actual sample values provided

5

6

7

8

01| 2| 3| 4
9
10
11
112
Intra_4X4

Yellow pixels: already reconstructed (values known)

White pixels: 4x4 block to be reconstructed

* An additional 8x8 mode exists in the H.264 High Profile

Intra_16x16

Stanford (S348K, Fall 2018

Intra_4x4 prediction modes

B Nine prediction modes (6 shown below)
= Other modes: horiz-down, vertical-left, horiz-up

0 4 91| 2| 3| 4
9 9
10 1
11 11
12 12

Mode 2: DC
(4x4 block is average of above

Mode 1: horizontal
(4x4 block is copy of left

Mode 0: vertical
(4x4 block is copy of

above row of pixels) col of pixels) row and left col of pixels)
0|1 4|, 5 8 0l 1 01
9 9 9
10 1 1
11 1 11
112 12 112

Mode 3: diagonal down-left (45°)

Mode 4: diagonal down-right (45°)

Mode 5: vertical-right (26.6°)

Stanford (S348K, Fall 2018

Intra_16x16 prediction modes

m 4 prediction modes: vertical, horizontal, DC, plane

Mode 0: vertical Mode 1: horizontal Mode 2: DC

Pli,jl=Ai*Bj +C
A derived from top row, B derived from left col, C from both

Mode 4: plane
Stanford (S348K, Fall 2018

Further details

B |ntra-prediction of chroma (8x8 block) is performed using four modes similar to
those of intra_16x16 (except reordered as: DC, vertical, horizontal, plane)

B [ntra-prediction scheme for each 4x4 block within macroblock encoded as follows:
= One bit per 4x4 block:

- if 1, use most probable mode

- Most probable = lower of modes used for 4x4 block to left or above
current block

- if 0, use additional 3-bit value rem_intra4x4 pred_mode to encode
one of nine modes

- if rem_intrad4x4_pred_mode is smaller than
most probable mode, use mode given by
rem_intrad4x4_pred _mode HH
- else, modeis rem_intra4x4 pred_mode+l

Stanford (S348K, Fall 2018

Inter-frame prediction (P-macroblock)

B Predict sample values using values from a block of a previously decoded frame *

B Basicidea: current frame formed by translation of pixels from temporally
nearby frames (e.g., object moved slightly on screen between frames)

- “Motion compensation”: use of spatial displacement to make prediction

about pixel values
macroblock
Recently decoded frames Frafne currently
being decoded

(stored in “decoded picture buffer”)

* Note: “previously decoded” does not imply source frame must come before current frame in the video sequence.

(H.264 supports decoding out of order.)
Stanford (5348K, Fall 2018

P-macroblock prediction

m Prediction can be performed at macroblock or sub-macroblock granularity
- Macroblock can be divided into 16x16, 8x16, 16x8, 8x8 “partitions”

- 8x8 partitions can be further subdivided into 4x8, 8x4, 4x4 sub-macroblock partitions

m Each partition predicted by sample values defined by:
(reference frame id, motion vector)

4x4 pixel sub-
“ | | macroblock
partition
Decoded picture Decoded picture Current frame
buffer: frame 1 buffer: frame 0

Block A: predicted from (frame 0, motion-vector =[-3, -1]) : :
_ . / Note: non-integer motion vector
Block B: predicted from (frame 1, motion-vector =[-2.5, -0.5])
Stanford C5348K, Fall 2018

Motion vector visualization

+* +* + +* +* +* +* +* +* + + + + + + + + + + + +* * * * * * * * * * > * +* + + + +* + + +* +* +* +* +* +* +* +* +* +*
+* +* +* + + + + +* + + + + + + +* * * + + * * * * * +* + +* +* * * * * * * * * +* +* + +* +* +* * * + +* +* +* +* +* +* +* +* +* +*
+ + + +* + + + + + + + + + + + + + + + + + * +* + +* +* +* +* +* +* +* + +* +* +* +* +* +* +* +* +* +*
+ L + + +* + + + + + $* + + + + + + * * * + * * * * * * * * * * +* * +* +* +* * +* * * * * * * * * * +* * * +* * * +* * * * +* * +* +* +* +* +* +* +* +* +* +* +* +* +* * + +* +* +* + + +*
+ + + + + + + + + + + + + + + + + * * * * +* * * * +* +* +* +* +* +* +* +* +* * +* +* * * +* +* * +* +* * +* * +* +* * * +* +* * * * +* + +* + +* +* +* + +* +* +* +* +* +* +* * +* +* * * +* +* + +
+ + + + + +* + + + + * * * * * * * * * * * * * +* +* +* +* +* +* +* +* +* +* * * * * +* +* * * * +* +* * +* +* * +* * * * * +* * * + +* +* +* +* +* +* +* +* * +* * +* +* * * * +* +* * +* + +* +*
* +* * * * * * * * * * * * * * * +* +* * +* +* * * * * * * * * * * +* * * +* +* +* +* +* +* +* +* +* +* * +* +* +* + +*

mage credit: Keyi Zhang Stanford (S348K, Fall 2018

Non-integer motion vectors require resampling

oo ¢ ¢ ¢ ¢ ¢ © Example: motion vector with 1/2 pixel values.

oo 0‘ 0‘0‘0‘0 ® Must resample reference block at positions given by red dots.

0009000

oo 0.0.0.0.0 @

> 9 o o ¢ oo : : : : :A: : :

oo 0'0'0'0’0 ® P P NP N L7 P W

o000 0 0 0 ©C.o

! W W W - - .Q...Digo
o009 QEQ o
) SP P NP WP WP NP
o0 0 0 0 0 0 ©

Interpolation to 1/2 pixel sample points via 6-tap filter:
half_integer_value = clamp((A - 5B + 20C + 20D - 5E + F) / 32)

H.264 supports both 1/2 pixel and 1/4 pixel resolution motion vectors
1/4 resolution resampling performed by bilinear interpolation of 1/2 pixel samples
1/8 resolution (chroma only) by bilinear interpolation of 1/4 pixel samples

Stanford (S348K, Fall 2018

Motion vector prediction

B Problem: per-partition motion vectors require significant amount of storage

m Solution: predict motion vectors from neighboring partitions and encode
residual in compressed video stream

- Example below: predict D’s motion vector as average of motion vectors of A, B, C

- Prediction logic hecomes more complex when when partitions of neighboring blocks

are of different size
.
n

Stanford (S348K, Fall 2018

Question: what partition size is best?

m Smaller partitions likely yield more accurate prediction

- Fewer bits needed for residuals

m Smaller partitions require more bits to store partition
information (diminish benefits of prediction)

- Reference picture id

- Motion vectors (note: motion vectors are more coherent with finer sampling, so
they likely compress well)

Stanford (S348K, Fall 2018

Inter-frame prediction (B-macroblock)

m Each partition predicted by up to two source blocks

- Prediction is the average of the two reference blocks

- Each B-macroblock partition stores two frame references and two motion
vectors (recall P-macroblock partitions only stored one)

prediction|=(A+B)/2

Frame currently

Previously decoded frames)
being decoded

(stored in “decoded picture Buffer”)

Stanford (S348K, Fall 2018

Additional prediction details

m (Optional weighting to prediction:
- Per-slice explicit weighting (reference samples multiplied by weight)

- Per-B-slice implicit weights (reference samples weights by temporal distance of
reference frame from current frame in video)

- ldea: weight samples from reference frames nearby in time more

m Deblocking

- Blocking artifacts may result as a result of macroblock granularity encoding

- After macroblock decoding is complete, optionally perform smoothing filter
across block edges.

Stanford (S348K, Fall 2018

Putting it all together: encoding an inter-
predicted macroblock

B [nputs:
- Current state of decoded picture buffer (state of the decoder)
- 16x16 block of input video to encode

B General steps: (need not be performed in this order)
- Resample images in decoded picture buffer to obtain 1/2, and 1/4, 1/8 pixel

resampling
- Choose prediction type (P-type or B-type)
. .« o Coupled
- Choose reference pictures for prediction decisions

- Choose motion vectors for each partition (or sub-partition) of macroblock

- Predict motion vectors and compute motion vector difference

- Encode choice of prediction type, reference pictures, and motion vector differences
- Encode residual for macroblock prediction

- Store reconstructed macroblock (post deblocking) in decoded picture buffer to use
as reference picture for future macroblocks

Stanford (S348K, Fall 2018

H.264/AV(C video encoding

MB = macroblock
MV = motion vector

Actual MB pixels
Basis

coefficients

)
Intra-frame Compute Taau“as::i';'zl Entropy | Compressed
Prediction Predicted MB Residual g Residual : Encoder Video Stream

Inter-frame Motion Motion Compute
Prediction vectors | Vector Pred. MV Diffs

Prediction parameters

Decoded Inverse
picture buffer €-mmmmmmmmes { Deblock } 1| transform/ [-
quantize

Source
Video
Frame

Credit: Figure derived from H.264 Advanced Video Compression Standard, I. Richardson, 2010 Stanford CS348K, Fall 2018

Motion estimation

B Encoder must find reference block that predicts current frame’s pixels well.

- (Can search over multiple pictures in decoded picture buffer + motion vectors can be
non-integer (huge search space)

- Must also choose block size (macroblock partition size)

= And whether to predict using combination of two blocks
- Literature is full of heuristics to accelerate this process

- Remember, must execute motion estimation in real-time for HD video
(1920x1080), on a low-power smartphone

==

Limit search window:

gray area: /

search region

Decoded picture
buffer: frame 0

Current frame

Stanford (S348K, Fall 2018

Motion estimation optimizations

® (Coarser search:
- Limit search window to small region

- First compute block differences at coarse scale (save partial sums from previous searches)

B Smarter search:

- Guess motion vectors similar to motion vectors used for neighboring blocks
- Diamond search: start by test large diamond pattern centered around block

- If best match is interior, refine to finer scale

- Else, recenter around best match

|

. S 4
09

L B

|
Original Refined

®

Recentered

B Early termination: don’t find optimal reference patch, just find one that’s “good enough”: e.g.,

compressed representation is lower than threshold
- Test zero-motion vector first (optimize for non-moving background)

B (ptimizations for subpixel motion vectors:

- Refinement: find best reference block given only pixel offsets, then try 1/2, 1/4-subpixel

offsets around this match

Stanford (S348K, Fall 2018

Fraction of energy consumed by different parts of
instruction pipeline (H.264 video encoding) ,....ccoisz0m0

100%

90%

80%

F0%

60%

50%

A0%

30%

20%

10%

0%

no SIMD/VLIW vs. SIMD/VLIW

Y\

O FU
H RF
m Ctl
M Pip
W D-5
M IF

3 % ¢ % T 5 % g T & %38 =z & %
3 s = % 3 8§ = * % 85 = ® % & =z
= = 2 2
= = = =
w u I I
IME FME IP CABAC
integer motion estimation fractional (subpixel) intraframe prediction, : : :
) o AR arithmetic encoding
motion estimation DTC, quantization
56% of total time 36% of total time 7% of total time 1% of total time (of baseline CPU imp)

FU = functional units
RF = register fetch

Ctrl = misc pipeline control

Pip = pipeline registers (interstage)

D-$ = data cache

IF = instruction fetch + instruction cache Stanford CS348K, Fall 2018

H.265 (HVEC)

m Standard ratified in 2013
m Goal: ~2X better compression than H.264

® Mainideas:
- Macroblock sizes up to 64x64

- Prediction block size and residual block sizes can be different

- 35 intra-frame prediction modes (recall H.264 had 9)

Stanford (S348K, Fall 2018

Learned compression schemes

m JPGimage compression and H.264 video compression are “lossy”
compression techniques that discard information is that is present in
the visual signal, but less likely to be noticed by the human eye

- Key principle: “Lossy, but still looks good enough to humans!”

m Compression schemes described in this lecture involved manual
choice / engineering of good representations (features)

- Frequency domain representation, YUV representation,
disregarding color information, flow vectors, etc.

B [ncreasing interest in learning good representations for a specific class
of images/videos, or for a specific task to perform on images/videos

Stanford (S348K, Fall 2018

Learned compression schemes

m Many recent DNN-based approaches to compressing video
learn to compress the residual

Original Video X Compressed VideoY
e H.264 Module '
H.264 Channel H.264
Encoder Decoder
H.264
Decoder
Residual Binarizer Huffman Huffman Residual
Encoder Encoder Decoder Decoder
Reconstructed
Residual R Residual R

[Tsai et al. 2018]
Use standard video compression at low quality, then use an auto encoder to compress the residual.

Stanford (S348K, Fall 2018

Summary

m JPGimage compression and H.264 video compression are “lossy”
compression techniques that discard information is that less likely to be
noticed by the human eye

- Key principle: “Lossy, but still looks good enough to humans!”

m But most videos in the world will soon be analyzed by computers, not
viewed by humans

- New principle: “Lossy, but image analysis tasks still work!”

- Can we “learn” domain-specific compressors for particular scenes,
types of tasks, etc?

Stanford (S348K, Fall 2018

