
Visual Computing Systems
Stanford CS348K, Fall 2018

Lecture 6:

Lossy Image and Video
Compression

Stanford CS348K, Fall 2018

Image Compression

Stanford CS348K, Fall 2018

A recent sunset in Half Moon Bay

Picture taken on my iPhone 7 (12 MPixel sensor)
4032 x 3024 pixels x (3 bytes/pixel) = 34.9 MB uncompressed image
JPG compressed image = 2.9 MB

Stanford CS348K, Fall 2018

Idea 1:
▪ Q. What is the most efficient way to encode intensity values as

a byte?

▪ A. Encode based on how the brain perceives brightness not,
based on actual response of eye

Stanford CS348K, Fall 2018

Lightness (perceived brightness) aka luma

Radiance
(energy spectrum

from scene)

∫=Luminance (Y)Lightness (L)
?

Spectral sensitivity of eye
(eye’s response curve)

Dark adapted eye: L* ∝ Y 0.4
Bright adapted eye: L* ∝ Y 0.5

In a dark room, you turn on a light with luminance: Y1

You turn on a second light that is identical to the first. Total output is now: Y2 = 2Y1

Total output appears times brighter to dark-adapted human20.4 = 1.319

Note: Lightness (L*) is often referred to as luma (Y’)

(Response of eye)(Perceived by brain)

Stanford CS348K, Fall 2018

Consider an image with pixel values encoding
luminance (linear in energy hitting sensor)

Luminance (Y)

Pe
rc

ei
ve

d
br

ig
ht

ne
ss

: L
*

Consider 12-bit sensor pixel:
Can represent 4096 unique luminance values
in output image

Values are ~ linear in luminance since they
represent the sensor’s response

L* = Y.45

Stanford CS348K, Fall 2018

Problem: quantization error

Luminance (Y)

Pe
rc

ei
ve

d
br

ig
ht

ne
ss

: L
*

Many common image formats store 8 bits per channel (256 unique values)
Insufficient precision to represent brightness in darker regions of image

Dark regions of image: perceived difference between
pixels that differ by one step in luminance is large!
(quantization error: gradients in luminance will not
appear smooth.)

Bright regions of image: perceived difference between
pixels that differ by one step in luminance is small!
(human may not even be able to perceive difference
between pixels that differ by one step in luminance!)

L* = Y.45

Rule of thumb: human eye cannot differentiate <1% differences in luminance

Stanford CS348K, Fall 2018

Store lightness, not luminance

Luminance (Y)

Pe
rc

ei
ve

d
br

ig
ht

ne
ss

: L
*

Solution: pixel stores Y0.45

Must compute (pixel_value)2.2 prior to display on LCD

Idea: distribute representable pixel values evenly with respect to perceived brightness,
not evenly in luminance (make more efficient use of available bits)

Warning: must take caution with subsequent
pixel processing operations once pixels are
encoded in a space that is not linear in
luminance.

e.g., When adding images should you add pixel
values that are encoded as lightness or as
luminance?

Stanford CS348K, Fall 2018

Idea 2:
▪ Chrominance (“chroma”) subsampling

▪ The human visual system is less sensitive to detail in
chromaticity than in luminance
- So it is sufficient to sample chroma at a lower rate

Stanford CS348K, Fall 2018

Y’CbCr color space
Y’ = luma: perceived luminance (non-linear)
Cb = blue-yellow deviation from gray
Cr = red-cyan deviation from gray

Y’

Cb

Cr

Image credit: Wikipedia

Conversion from R’G’B’ to Y’CbCr:

Non-linear RGB
(primed notation indicates
perceptual (non-linear) space)

Stanford CS348K, Fall 2018

Example: compression in Y’CbCr

Original picture of Kayvon

Stanford CS348K, Fall 2018

Contents of CbCr color channels downsampled by a factor of 20 in each dimension
(400x reduction in number of samples)

Example: compression in Y’CbCr

Stanford CS348K, Fall 2018

Full resolution sampling of luma (Y’)

Example: compression in Y’CbCr

Stanford CS348K, Fall 2018

Reconstructed result
(looks pretty good)

Example: compression in Y’CbCr

Stanford CS348K, Fall 2018

Chroma subsampling
Y’CbCr is an efficient representation for storage (and transmission) because Y’ can be
stored at higher resolution than CbCr without significant loss in perceived visual quality

4:2:2 representation:

Store Y’ at full resolution
Store Cb, Cr at full vertical resolution,
but only half horizontal resolution

Y’00 Y’10 Y’20 Y’30
Cb00 Cb20
Cr00 Cr20

Y’01 Y’11 Y’21 Y’31
Cb01 Cb21
Cr01 Cr21

Y’00 Y’10 Y’20 Y’30
Cb00 Cb20
Cr00 Cr20

Y’01 Y’11 Y’21 Y’31

4:2:0 representation:

Store Y’ at full resolution
Store Cb, Cr at half resolution in both
dimensions

X:Y:Z notation:
X = width of block
Y = number of chroma samples in first row
Z = number of chroma samples in second row

Real-world 4:2:0 examples:
most JPG images and H.264 video
Blue-Ray

Stanford CS348K, Fall 2018

Idea 3:
▪ Low frequency content is predominant in the real world

▪ The human visual system is less sensitive to high frequency
sources of error in images

▪ So a good compression scheme needs to accurately represent
lower frequencies, but it can be acceptable to sacrifice
accuracy in representing higher frequencies

Stanford CS348K, Fall 2018

Recall: frequency content of images

SpectrumSpatial domain result

Stanford CS348K, Fall 2018

Recall: frequency content of images

Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude

Spatial domain result

Stanford CS348K, Fall 2018

Recall: frequency content of images

Spatial domain result
(strongest edges)

Spectrum (after high-pass filter)
All frequencies below threshold

have 0 magnitude

Stanford CS348K, Fall 2018

A recent sunset in Half Moon Bay

Stanford CS348K, Fall 2018

(with noise added)A recent sunset in Half Moon Bay

Stanford CS348K, Fall 2018

(with more noise added)A recent sunset in Half Moon Bay

Stanford CS348K, Fall 2018

A recent sunset in Half Moon Bay

Original image Noise added
(increases high frequency content)

More noise added

Stanford CS348K, Fall 2018

What is a good representation for
manipulating frequency content of images?

Hint:

Stanford CS348K, Fall 2018

Image transform coding via discrete cosign
transform (DCT)

x=

64 cosine basis vectors
(each vector is 8x8 image)

64 basis coefficients

8x8 pixel block
(64 coefficients of signal in

“pixel basis”)

In practice: DCT applied to 8x8 pixel blocks of Y’ channel, 16x16 pixel blocks of Cb, Cr (assuming 4:2:0)

basis[i, j] =

[0,0]

[7,7]

Stanford CS348K, Fall 2018

Examples of other bases
This slide illustrates basis images for 4x4 image block

[Image credit: https://people.xiph.org/~xiphmont/demo/daala/demo3.shtml]

DCT Walsh-Hadamard Haar Wavelet

Pixel Basis
(Compact: each coefficient in
representation only effects a
single pixel of output)

Stanford CS348K, Fall 2018

Quantization

Quantization produces small values for coefficients (only few bits needed per coefficient)
Quantization zeros out many coefficients

Slide credit: Wikipedia, Pat Hanrahan

Changing JPEG quality setting in your favorite photo app
modifies this matrix (“lower quality” = higher values for
elements in quantization matrix)

Result of DCT
(representation of image in cosine basis)

Quantization Matrix

=

[Credit: Pat Hanrahan]

Stanford CS348K, Fall 2018

JPEG compression artifacts
Noticeable 8x8 pixel block boundaries

Low quality Medium quality

Low-frequency regions of image represented accurately even under high compression

Noticeable error near high gradients

Low Quality Medium Quality

Stanford CS348K, Fall 2018

JPEG compression artifacts

Quality Level 1Quality Level 3

Original Image Quality Level 9 Quality Level 6

Why might JPEG compression not
be a good compression scheme for
illustrations and rasterized text?

Original Image
(actual size)

Stanford CS348K, Fall 2018

Images with high frequency content do
not exhibit as high compression ratios.
Why?

Original image: 2.9MB JPG

High noise: 28.9 MB JPG

Medium noise: 22.6 MB JPG

Uncompressed image:
4032 x 3024 x 24 bytes/pixel = 36.6 MB

Photoshop JPG compression level = 10
used for all compressed images

Stanford CS348K, Fall 2018

Lossless compression of quantized DCT values

Quantized DCT Values

Reordering
Entropy encoding: (lossless)

Reorder values

Run-length encode (RLE) 0’s

Huffman encode non-zero values

Image credit: Wikipedia

Stanford CS348K, Fall 2018

JPEG compression summary

Credit: Pat Hanrahan

Coefficient reordering

RLE compression of zeros

Entropy compression of
non-zeros

Compressed bits

Lossless compression!

Quantization loses information
(lossy compression!)

Stanford CS348K, Fall 2018

JPEG compression summary
Convert image to Y’CbCr
Downsample CbCr (to 4:2:2 or 4:2:0) (information loss occurs here)
For each color channel (Y’, Cb, Cr):

For each 8x8 block of values
Compute DCT
Quantize results (information loss occurs here)
Reorder values
Run-length encode 0-spans
Huffman encode non-zero values

Stanford CS348K, Fall 2018

Key idea: exploit characteristics of human
perception to build efficient image storage and
image processing systems

▪ Separation of luminance from chrominance in color representation (Y’CrCb)
allows reduced resolution in chrominance channels (4:2:0)

▪ Encode pixel values linearly in lightness (perceived brightness), not in
luminance (distribute representable values uniformly in perceptual space)

▪ JPEG compression significantly reduces file size at cost of quantization error
in high spatial frequencies

- Human brain is more tolerant of errors in high frequency image
components than in low frequency ones

- Images of the real world are dominated by low-frequency components

Stanford CS348K, Fall 2018

H.264 Video Compression

Stanford CS348K, Fall 2018

Example video
30 second video: 1920 x 1080, @ 30fps

After decode: 8-bits per channel RGB → 24 bits/pixel → 6.2MB/frame
(6.2 MB * 30 sec * 30 fps = 5.2 GB)
Size of data when each frames stored as JPG: 531MB
Actual H.264 video file size: 65.4 MB (80-to-1 compression ratio, 8-to-1 compared to JPG)
Compression/encoding performed in real time on my iPhone

Go Swallows!

Stanford CS348K, Fall 2018

H.264/AVC video compression
▪ AVC = advanced video coding

▪ Also called MPEG4 Part 10

▪ Common format in many modern HD video applications:
- Blue Ray

- HD streaming video on internet (Youtube, Vimeo, iTunes store, etc.)

- HD video recorded by your smart phone

- European broadcast HDTV (U.S. broadcast HDTV uses MPEG 2)

- Some satellite TV broadcasts (e.g., DirecTV)

▪ Benefit: much higher compression ratios than MPEG2 or MPEG4
- Alternatively, higher quality video for fixed bit rate

▪ Costs: higher decoding complexity, substantially higher encoding cost
- Idea: trades off more compute for requiring less bandwidth/storage

Stanford CS348K, Fall 2018

Hardware implementations
▪ Support for H.264 video encode/decode is provided by fixed-function

hardware on most modern processors (not just mobile devices)

▪ Hardware encoding/decoding support existed in modern Intel CPUs since
Sandy Bridge (Intel “Quick Sync”)

▪ Modern operating systems expose hardware encode decode support
through hardware-accelerated APIs

- e.g., DirectShow/DirectX (Windows), AVFoundation (iOS)

Stanford CS348K, Fall 2018

Video container format versus video codec
▪ Video container (MOV, AVI) bundles media assets

▪ Video codec: H.264/AVC (MPEG 4 Part 10)
- H.264 standard defines how to represent and decode video

- H.264 does not define how to encode video (this is left up to implementations)

- H.264 has many profiles

- High Profile (HiP): supported by HDV and Blue Ray

Stanford CS348K, Fall 2018

Video compression: main ideas
▪ Compression is about exploiting redundancy in a signal

- Intra-frame redundancy: value of pixels in neighboring
regions of a frame are good predictor of values for other
pixels in the frame (spatial redundancy)

- Inter-frame redundancy: pixels from nearby frames in time
are a good predictor for the current frame’s pixels
(temporal redundancy)

Stanford CS348K, Fall 2018

Residual: difference between compressed image and
original image

Original pixels

Compressed pixels
(JPEG quality level 2)

Residual
(amplified for visualization)

Compressed pixels
(JPEG quality level 6)

Residual
(amplified for visualization)

Stanford CS348K, Fall 2018

H.264/AVC video compression overview

Intra-/Inter-frame
Prediction Model

Transform/
Quantize
Residual

Previously
Coded Data

Entropy
Encoding

Source
Video

Compressed
Video Stream

Prediction
parameters

Residual
Basis

coefficients

Credit: Figure derived from H.264 Advanced Video Compression Standard, I. Richardson, 2010

Residual: difference between predicted pixel values and input video pixel values

Stanford CS348K, Fall 2018

16 x 16 macroblocks
Video frame is partitioned into 16 x 16
pixel macroblocks

Due to 4:2:0 chroma subsampling,
macroblocks correspond to 16 x 16 luma
samples and 8 x 8 chroma samples

Stanford CS348K, Fall 2018

Macroblocks in an image are organized
into slices

Figure to left shows the macro blocks in a
frame

Macroblocks are grouped into slices

Can think of a slice as a sequence of
macroblocks in raster scan order *

Slices can be decoded independently **

Slice 1

Slice 2

* H.264 also has non-raster-scan order modes (FMO), will not discuss today.

** Final “deblocking” pass is often applied to post-decode pixel data, so technically slices are not fully independent.

One 16x16 macroblock

Stanford CS348K, Fall 2018

Decoding via prediction + correction
▪ During decode, samples in a macroblock are generated by:

1. Making a prediction based on already decoded samples in macroblocks from
the same frame (intra-frame prediction) or from other frames (inter-frame
prediction)

2. Correcting the prediction with a residual stored in the video stream

▪ Three forms of prediction:
- I-macroblock: macroblock samples predicted from samples in previous

macroblocks in the same slice of the current frame

- P-macroblock: macroblock samples can be predicted from samples from one
other frame (one prediction per macroblock)

- B-macroblock: macroblock samples can be predicted by a weighted combination
of multiple predictions from samples from other frames

Stanford CS348K, Fall 2018

Intra-frame prediction (I-macroblock)
▪ Prediction of sample values is performed in spatial domain, not transform domain

- Predicting pixel values, not basis coefficients

▪ Modes for predicting the 16x16 luma (Y) values: *
- Intra_4x4 mode: predict 4x4 block of samples from adjacent row/col of pixels

- Intra_16x16 mode: predict entire 16x16 block of pixels from adjacent row/col

- I_PCM: actual sample values provided

0 1 2 3 4 5 6 7 8
9
10
11
12

Intra_4X4

Intra_16x16

Yellow pixels: already reconstructed (values known)
White pixels: 4x4 block to be reconstructed

* An additional 8x8 mode exists in the H.264 High Profile

Stanford CS348K, Fall 2018

Intra_4x4 prediction modes
▪ Nine prediction modes (6 shown below)

- Other modes: horiz-down, vertical-left, horiz-up

0 1 2 3 4
9
10
11
12

0 1 2 3 4
9
10
11
12

0 1 2 3 4
9
10
11
12

0 1 2 3 4 5 6 7 8
9
10
11
12

Mode 0: vertical
(4x4 block is copy of
above row of pixels)

Mode 1: horizontal
(4x4 block is copy of left

col of pixels)

Mode 2: DC
(4x4 block is average of above

row and left col of pixels)

Average

Mode 3: diagonal down-left (45o)

0 1 2 3 4
9
10
11
12

Mode 4: diagonal down-right (45o)

0 1 2 3 4
9
10
11
12

Mode 5: vertical-right (26.6o)

Stanford CS348K, Fall 2018

Intra_16x16 prediction modes
▪ 4 prediction modes: vertical, horizontal, DC, plane

Average

Mode 0: vertical Mode 1: horizontal Mode 2: DC

Mode 4: plane

P[i,j] = Ai * Bj + C
A derived from top row, B derived from left col, C from both

Stanford CS348K, Fall 2018

Further details
▪ Intra-prediction of chroma (8x8 block) is performed using four modes similar to

those of intra_16x16 (except reordered as: DC, vertical, horizontal, plane)

▪ Intra-prediction scheme for each 4x4 block within macroblock encoded as follows:

- One bit per 4x4 block:

- if 1, use most probable mode

- Most probable = lower of modes used for 4x4 block to left or above
current block

- if 0, use additional 3-bit value rem_intra4x4_pred_mode to encode
one of nine modes

mode=??mode=2

mode=8- if rem_intra4x4_pred_mode is smaller than
most probable mode, use mode given by
rem_intra4x4_pred_mode

- else, mode is rem_intra4x4_pred_mode+1

Stanford CS348K, Fall 2018

Inter-frame prediction (P-macroblock)
▪ Predict sample values using values from a block of a previously decoded frame *

▪ Basic idea: current frame formed by translation of pixels from temporally
nearby frames (e.g., object moved slightly on screen between frames)

- “Motion compensation”: use of spatial displacement to make prediction
about pixel values

Recently decoded frames
(stored in “decoded picture buffer”)

macroblock

Frame currently
being decoded

* Note: “previously decoded” does not imply source frame must come before current frame in the video sequence.
 (H.264 supports decoding out of order.)

Stanford CS348K, Fall 2018

P-macroblock prediction

Decoded picture
buffer: frame 0

Decoded picture
buffer: frame 1

Current frame

A

B

Block A: predicted from (frame 0, motion-vector = [-3, -1])
Block B: predicted from (frame 1, motion-vector = [-2.5, -0.5])

▪ Prediction can be performed at macroblock or sub-macroblock granularity
- Macroblock can be divided into 16x16, 8x16, 16x8, 8x8 “partitions”

- 8x8 partitions can be further subdivided into 4x8, 8x4, 4x4 sub-macroblock partitions

▪ Each partition predicted by sample values defined by:
(reference frame id, motion vector)

4x4 pixel sub-
macroblock

partition

Note: non-integer motion vector

Stanford CS348K, Fall 2018

Motion vector visualization

Image credit: Keyi Zhang

Stanford CS348K, Fall 2018

Non-integer motion vectors require resampling

Interpolation to 1/2 pixel sample points via 6-tap filter:
half_integer_value = clamp((A - 5B + 20C + 20D - 5E + F) / 32)

H.264 supports both 1/2 pixel and 1/4 pixel resolution motion vectors
1/4 resolution resampling performed by bilinear interpolation of 1/2 pixel samples
1/8 resolution (chroma only) by bilinear interpolation of 1/4 pixel samples

A

B

C

D
E

F

Example: motion vector with 1/2 pixel values.
Must resample reference block at positions given by red dots.

Stanford CS348K, Fall 2018

Motion vector prediction
▪ Problem: per-partition motion vectors require significant amount of storage

▪ Solution: predict motion vectors from neighboring partitions and encode
residual in compressed video stream
- Example below: predict D’s motion vector as average of motion vectors of A, B, C

- Prediction logic becomes more complex when when partitions of neighboring blocks
are of different size

DA

B C

Stanford CS348K, Fall 2018

Question: what partition size is best?
▪ Smaller partitions likely yield more accurate prediction

- Fewer bits needed for residuals

▪ Smaller partitions require more bits to store partition
information (diminish benefits of prediction)
- Reference picture id

- Motion vectors (note: motion vectors are more coherent with finer sampling, so
they likely compress well)

Stanford CS348K, Fall 2018

Inter-frame prediction (B-macroblock)
▪ Each partition predicted by up to two source blocks

- Prediction is the average of the two reference blocks

- Each B-macroblock partition stores two frame references and two motion
vectors (recall P-macroblock partitions only stored one)

Previously decoded frames
(stored in “decoded picture Buffer”)

Frame currently
being decoded

A

B

prediction = (A + B) / 2

Stanford CS348K, Fall 2018

Additional prediction details
▪ Optional weighting to prediction:

- Per-slice explicit weighting (reference samples multiplied by weight)

- Per-B-slice implicit weights (reference samples weights by temporal distance of
reference frame from current frame in video)
- Idea: weight samples from reference frames nearby in time more

▪ Deblocking
- Blocking artifacts may result as a result of macroblock granularity encoding

- After macroblock decoding is complete, optionally perform smoothing filter
across block edges.

Stanford CS348K, Fall 2018

Putting it all together: encoding an inter-
predicted macroblock
▪ Inputs:

- Current state of decoded picture buffer (state of the decoder)
- 16x16 block of input video to encode

▪ General steps: (need not be performed in this order)
- Resample images in decoded picture buffer to obtain 1/2, and 1/4, 1/8 pixel

resampling
- Choose prediction type (P-type or B-type)
- Choose reference pictures for prediction
- Choose motion vectors for each partition (or sub-partition) of macroblock
- Predict motion vectors and compute motion vector difference
- Encode choice of prediction type, reference pictures, and motion vector differences
- Encode residual for macroblock prediction
- Store reconstructed macroblock (post deblocking) in decoded picture buffer to use

as reference picture for future macroblocks

Coupled
decisions

Stanford CS348K, Fall 2018

H.264/AVC video encoding

Intra-frame
Prediction

Transform/
Quantize
Residual

Decoded
picture buffer

Source
Video

Frame

Compressed
Video Stream

Prediction parameters

Actual MB pixels
Basis

coefficients

Credit: Figure derived from H.264 Advanced Video Compression Standard, I. Richardson, 2010

Inter-frame
Prediction

Predicted MB
Compute
Residual

Entropy
Encoder

Motion
Vector Pred.

Compute
MV Diffs

Inverse
transform/

quantize
Deblock

Motion
vectors

MB = macroblock
MV = motion vector

Stanford CS348K, Fall 2018

Motion estimation
▪ Encoder must find reference block that predicts current frame’s pixels well.

- Can search over multiple pictures in decoded picture buffer + motion vectors can be
non-integer (huge search space)

- Must also choose block size (macroblock partition size)
- And whether to predict using combination of two blocks
- Literature is full of heuristics to accelerate this process

- Remember, must execute motion estimation in real-time for HD video
(1920x1080), on a low-power smartphone

A

gray area:
search region Decoded picture

buffer: frame 0
Current frame

Limit search window:

Stanford CS348K, Fall 2018

Motion estimation optimizations
▪ Coarser search:

- Limit search window to small region
- First compute block differences at coarse scale (save partial sums from previous searches)

▪ Smarter search:
- Guess motion vectors similar to motion vectors used for neighboring blocks
- Diamond search: start by test large diamond pattern centered around block

- If best match is interior, refine to finer scale
- Else, recenter around best match

▪ Early termination: don’t find optimal reference patch, just find one that’s “good enough”: e.g.,
compressed representation is lower than threshold

- Test zero-motion vector first (optimize for non-moving background)
▪ Optimizations for subpixel motion vectors:

- Refinement: find best reference block given only pixel offsets, then try 1/2, 1/4-subpixel
offsets around this match

Original Refined Recentered

Stanford CS348K, Fall 2018

Fraction of energy consumed by different parts of
instruction pipeline (H.264 video encoding)

acc = 0;
acc = AddShft(acc, x0, x1
acc = AddShft(acc, x

, 20);
-1, x2

acc = AddShft(acc, x
, -5);

-2, x3
xn = Sat(acc);

, 1);

Figure 5. FME upsampling after fusion of two multiplications and two
additions. AddShft takes two inputs, multiplies both with the
multiplicand and adds the result. Multiplication is performed using
shifts and adds. Operation fusion results in 3 instructions instead of
the RISC’s 5 add/sub and 4 multiplication instructions.

Table 5. Fused operations added to each unit and the resulting
performance and energy gains. FME required fusion of large
subgraphs to get significant performance improvement.

of

fused
ops

Op
Depth

Energy
Gain

Perf
Gain

IME 4 3-5 1.5 1.6

FME 2 18-34 1.9 2.4

Intra 8 3-7 1.9 2.1

CABAC 5 3-7 1.1 1.1

Table 5 presents the number of fused operations created for each
H.264 algorithm, the average size of the fused instruction
subgraphs, and the total energy and performance gain achieved
through fusion. Interestingly, IME and FME do not share any
instructions, though Intra and FME share instructions for the
Hadamard transform. DCT transform also implements the same

transform instructions. CABAC’s fused operations provide
negligible performance and energy gains of 1.1x. Fused
instructions give the largest advantage for FME, on average
doubling the energy/performance advantage of SIMD/VLIW.
Employing fused operations in combination with SIMD/VLIW
results in an overall performance improvement of 15x for the
H.264 encoder, and an energy efficiency gain of almost 10x, but
still uses greater than 50x more energy than an ASIC.
The basic problem is clear. For H.264, the basic operations are
very simple and low energy. In our base machine we over-
estimate the energy consumed by the functional units, since we
count the entire 32–wide functional unit energy. When we move
to the SIMD machine, we tailor the functional unit to the desired
width, which reduces the required energy. However, executing
10s of narrow width operations per instruction still leaves a
machine that is spending 90% of its energy on overhead functions,
with only 10% going to the functional units.

4.3 Algorithm Specific Instructions
To bridge the remaining gap, we must create instructions that can
execute 100s of operations in a single instruction. To achieve this
parallelism requires creating instructions that are tightly
connected to custom data storage elements with algorithm-
specific communication links to supply the large amounts of data
required, and thus tend to be very closely tied to the specific
algorithmic methods being optimized. These storage elements can
then be directly wired to custom designed multiple input and
possibly multiple output functional units, directly implementing
the required communication for the function in hardware.

Once this hardware is in place, the machine can issue “magic”
instructions that can accomplish large amounts of computation at
very low costs. This type of structure eliminates almost all the

Figure 4. Datapath energy breakdown for H.264. IF is instruction fetch/decode (including the I-cache). D-$ is the D-cache. Pip is the
pipeline registers, busses, and clocking. Ctl is random control. RF is the register file. FU is the functional elements. Only the top bar
(FU), or perhaps the top two (FU + RF) contribute useful work in the processor. For this application it is hard to achieve much more
than 10% of the power in the FU without adding custom hardware units. This data was estimated from processor simulations.

42

FU = functional units
RF = register fetch

Ctrl = misc pipeline control
Pip = pipeline registers (interstage) IF = instruction fetch + instruction cache

D-$ = data cache

integer motion estimation fractional (subpixel)
motion estimation

intraframe prediction,
DTC, quantization

arithmetic encoding

no SIMD/VLIW vs. SIMD/VLIW
[Hameed et al. ISCA 2010]

56% of total time 36% of total time 7% of total time 1% of total time (of baseline CPU imp)

Stanford CS348K, Fall 2018

H.265 (HVEC)
▪ Standard ratified in 2013

▪ Goal: ~2X better compression than H.264

▪ Main ideas:
- Macroblock sizes up to 64x64

- Prediction block size and residual block sizes can be different

- 35 intra-frame prediction modes (recall H.264 had 9)

- …

Stanford CS348K, Fall 2018

Learned compression schemes
▪ JPG image compression and H.264 video compression are “lossy”

compression techniques that discard information is that is present in
the visual signal, but less likely to be noticed by the human eye

- Key principle: “Lossy, but still looks good enough to humans!”

▪ Compression schemes described in this lecture involved manual
choice / engineering of good representations (features)

- Frequency domain representation, YUV representation,
disregarding color information, flow vectors, etc.

▪ Increasing interest in learning good representations for a specific class
of images/videos, or for a specific task to perform on images/videos

Stanford CS348K, Fall 2018

Learned compression schemes
▪ Many recent DNN-based approaches to compressing video

learn to compress the residual

Figure 1: Overview of our proposed video streaming pipeline. It consists of two modules: a conventional H.264 module and our
proposed residual autoencoder. The input to our residual module is the difference between the original and compressed videos.
The difference is encoded and binarized to generate binary representations. We utilize Huffman coding to further compress the
binary representations into a bit stream in a lossless manner. On the client side, we reconstruct the output video by adding back
the decoded difference to the compressed video.

only can we improve the output quality by spending a small
amount of effort, but also the system can adapt to existing
compression platforms and train for specific domains by ex-
ploiting large-scale data. Note that, although we use H.264
in our pipeline, other video compression standards such as
MPEG4 and HEVC can be used as well.

Given an input video X, we obtain the compressed video
Y by applying H.264. The difference between the two
videos is called the residual information R = X �Y. The
larger the residual information, the poorer the compressed
video quality. We also note that R is not included in Y be-
cause it consists of highly non-linear patterns, which can not
be compressed effectively with conventional approaches.

We argue that by limiting the video domain, we could
leverage a novel autoencoder to effectively compress the
residual information. The autoencoder consists of a pair of
functions (E ,D), where the encoder E maps R to a binary
map and the decoder D recovers R from the binary map
on the client side. The recovered residual information is re-
ferred to as R̂ and the final output video Y+ R̂ has a better
visual quality than Y. We note that the binary map is further
mapped to a bit stream by using the Huffman coding algo-
rithm (Cover and Thomas 2006), which is asymptotically
optimal, to reduce its bandwidth usage.

Sending the bit stream of the residual information requires
additional bandwidth. However, we can train an autoencoder
that only requires a much smaller bandwidth to compress
the residual information than H.264. Therefore, we can run
the H.264 standard in a higher compression rate, which uses
a smaller bandwidth but results in a larger residual signal.
We then apply our autoencoder to compress the residual sig-
nal into a small bit stream. Considering a scenario where
the bandwidth for a video stream is 5Mbps, we can apply
the proposed pipeline to compress the video in 4Mbps us-
ing H.264 and utilize the remaining 1Mbps for sending the
residual signal. Because our autoencoder is more efficient

than H.264 in compressing the residual signal, our system
achieve better performance than a baseline system that allo-
cates all the 5Mbps for H.264.

One may wonder why not completely replacing the H.264
standard with the proposed residual autoencoder. We argue
that our residual autoencoder is only more efficient than
H.264 in compressing the residual signal. The carefully-
engineered H.264 is more efficient in compressing the core
video. By marrying the strength of H.264 and the proposed
autoencoder, our hybrid system achieves better performance.
Moreover, our pipeline can be easily integrated into the ex-
isting H.264 standard since the residual information can
be attached in the meta field of a H.264 streaming packet.
Hence we can enjoy the popularity of the H.264 standard
and various hardware accelerators implemented for H.264.

We note that in the proposed domain-specific video
streaming pipeline, one needs to send the parameters of D
and the Huffman decoder table to the client for the stream-
ing service, which requires an additional bandwidth. How-
ever, the parameters can be sent before the streaming starts.
Once the parameters are sent, the user can enjoy the low la-
tency and high video quality features of the proposed video
streaming pipeline.

Binary Residual Autoencoder

We design an autoencoder that consists of three components:
encoder E , binarizer B (introduced in the next section) and
decoder D. For the encoder, the goal is to learn to extract
compact feature representations for the following binarizer.
We use L convolutional layers in our encoder, in which each
layer has the same channel number C and a stride of two
that down-samples feature maps. The binarizer converts the
output from the last convolutional layer into a binary map.
For the decoder, we aim to up-sample the binary map back to
the original input. Our decoder has L convolutional layers.
At the end of each convolutional layer, a sub-pixel layer (Shi

[Tsai et al. 2018]
Use standard video compression at low quality, then use an auto encoder to compress the residual.

Stanford CS348K, Fall 2018

Summary
▪ JPG image compression and H.264 video compression are “lossy”

compression techniques that discard information is that less likely to be
noticed by the human eye

- Key principle: “Lossy, but still looks good enough to humans!”

▪ But most videos in the world will soon be analyzed by computers, not
viewed by humans

- New principle: “Lossy, but image analysis tasks still work!”

- Can we “learn” domain-specific compressors for particular scenes,
types of tasks, etc?

