
Visual Computing Systems
Stanford CS348K, Fall 2018

Lecture 5:

Image Processing Hardware

 Stanford CS348K, Fall 2018

Image processing workload characteristics
▪ “Pointwise" operations

- output_pixel = f(input_pixel)

▪ “Stencil” computations (e.g., convolution, demosaic, etc.)
- Output pixel (x,y) depends on fixed-size local region of input around (x,y)

▪ Lookup tables
- e.g., contrast s-curve

▪ Multi-resolution operations (upsampling/downsampling)
- e.g., Building Gaussian/Laplacian pyramids

▪ Fast-fourier transform
- We didn’t talk about many Fourier-domain techniques in class (but readings

had many examples)

▪ Long pipelines (DAGs) of these operations

 Stanford CS348K, Fall 2018

So far, the discussion in this class has focused
on generating efficient code for multi-core

processors such as CPUs and GPUs.

 Stanford CS348K, Fall 2018

Consider the complexity of executing an
instruction on a modern processor…

Read instruction
Decode instruction
Check for dependencies/pipeline hazards
Identify available execution resource
Use decoded operands to control register file (retrieve data)
Move data from register file to selected execution resource
Perform arithmetic operation
Move data from execution resource to register file
Use decoded operands to control write to register file SRAM

Translate op to uops, access uop cache, etc.

Address translation, communicate with icache, access icache, etc.

Question:
How does SIMD execution reduce overhead when executing certain types of computations?
What properties must these computations have?

 Stanford CS348K, Fall 2018

Fraction of energy consumed by different parts of
instruction pipeline (H.264 video encoding)

acc = 0;
acc = AddShft(acc, x0, x1
acc = AddShft(acc, x

, 20);
-1, x2

acc = AddShft(acc, x
, -5);

-2, x3
xn = Sat(acc);

, 1);

Figure 5. FME upsampling after fusion of two multiplications and two
additions. AddShft takes two inputs, multiplies both with the
multiplicand and adds the result. Multiplication is performed using
shifts and adds. Operation fusion results in 3 instructions instead of
the RISC’s 5 add/sub and 4 multiplication instructions.

Table 5. Fused operations added to each unit and the resulting
performance and energy gains. FME required fusion of large
subgraphs to get significant performance improvement.

of

fused
ops

Op
Depth

Energy
Gain

Perf
Gain

IME 4 3-5 1.5 1.6

FME 2 18-34 1.9 2.4

Intra 8 3-7 1.9 2.1

CABAC 5 3-7 1.1 1.1

Table 5 presents the number of fused operations created for each
H.264 algorithm, the average size of the fused instruction
subgraphs, and the total energy and performance gain achieved
through fusion. Interestingly, IME and FME do not share any
instructions, though Intra and FME share instructions for the
Hadamard transform. DCT transform also implements the same

transform instructions. CABAC’s fused operations provide
negligible performance and energy gains of 1.1x. Fused
instructions give the largest advantage for FME, on average
doubling the energy/performance advantage of SIMD/VLIW.
Employing fused operations in combination with SIMD/VLIW
results in an overall performance improvement of 15x for the
H.264 encoder, and an energy efficiency gain of almost 10x, but
still uses greater than 50x more energy than an ASIC.
The basic problem is clear. For H.264, the basic operations are
very simple and low energy. In our base machine we over-
estimate the energy consumed by the functional units, since we
count the entire 32–wide functional unit energy. When we move
to the SIMD machine, we tailor the functional unit to the desired
width, which reduces the required energy. However, executing
10s of narrow width operations per instruction still leaves a
machine that is spending 90% of its energy on overhead functions,
with only 10% going to the functional units.

4.3 Algorithm Specific Instructions
To bridge the remaining gap, we must create instructions that can
execute 100s of operations in a single instruction. To achieve this
parallelism requires creating instructions that are tightly
connected to custom data storage elements with algorithm-
specific communication links to supply the large amounts of data
required, and thus tend to be very closely tied to the specific
algorithmic methods being optimized. These storage elements can
then be directly wired to custom designed multiple input and
possibly multiple output functional units, directly implementing
the required communication for the function in hardware.

Once this hardware is in place, the machine can issue “magic”
instructions that can accomplish large amounts of computation at
very low costs. This type of structure eliminates almost all the

Figure 4. Datapath energy breakdown for H.264. IF is instruction fetch/decode (including the I-cache). D-$ is the D-cache. Pip is the
pipeline registers, busses, and clocking. Ctl is random control. RF is the register file. FU is the functional elements. Only the top bar
(FU), or perhaps the top two (FU + RF) contribute useful work in the processor. For this application it is hard to achieve much more
than 10% of the power in the FU without adding custom hardware units. This data was estimated from processor simulations.

42

FU = functional units
RF = register fetch
Ctrl = misc pipeline control

Pip = pipeline registers (interstage)

IF = instruction fetch + instruction cache
D-$ = data cache

integer motion estimation fractional (subpixel)
motion estimation

intraframe prediction,
DTC, quantization

arithmetic encoding

no SIMD/VLIW vs. SIMD/VLIW
[Hameed et al. ISCA 2010]

 Stanford CS348K, Fall 2018

Modern SoC’s feature ASIC for image processing
▪ Implement basic RAW to RGB camera pipeline in silicon

- Traditionally has been critical for real-time processing like
viewfinder or video

Image Signal Processor
ASIC for processing camera

sensor pixels

Qualcomm Snapdragon SoC

 Stanford CS348K, Fall 2018

Digital Signal Processor (DSP)
▪ Typically simpler instruction stream control paths
▪ Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction

8
Qualcomm Technologies, Inc. All Rights Reserved

Maximizing the signal processing code work/packet
Example from inner loop of FFT: Executing 29 “simple RISC ops” in 1 cycle

Rs

Add

I R

Rt

*
32

<<0-1

*
32

<<0-1

Rd

I R

Add

I R

*
32

<<0-1

*
32

<<0-1

I R

Rs

Rt

-
0x80000x8000

Sat_32 Sat_32

High 16bitsHigh 16bits

I R

+ + + +

{ R17:16 = MEMD(R0++M1)
 MEMD(R6++M1) = R25:24
 R20 = CMPY(R20, R8):<<1:rnd:sat
 R11:10 = VADDH(R11:10, R13:12)
 }:endloop0

Complex multiply with
round and saturation

Vector 4x16-bit Add

64-bit Load and

Zero-overhead loops
• Dec count
• Compare
• Jump top

64-bit Store with
post-update
addressing

Example: Qualcomm Hexagon
Used for modem, audio, and (increasingly)
image processing on Qualcomm Snapdragon
SoC processors

Below: innermost loop of FFT
29 “RISC” ops per cycle

7
Qualcomm Technologies, Inc. All Rights Reserved

Instruction Unit

VLIW: Area & power efficient multi-issue

Data Unit
(Load/
Store/
ALU)

Data Unit
(Load/
Store/
ALU)

Execution
Unit

(64-bit
Vector)

Execution
Unit

(64-bit
Vector)

Data Cache

L2
Cache
/ TCM

Instruction
Cache

• Dual 64-bit
load/store
units

• Also 32-bit
ALU

Variable sized
instruction packets
(1 to 4 instructions
per Packet)

• Dual 64-bit execution units
• Standard 8/16/32/64bit data

types
• SIMD vectorized MPY / ALU

/ SHIFT, Permute, BitOps
• Up to 8 16b MAC/cycle
• 2 SP FMA/cycle

Register File
Register File

Register File/Thread

• Unified 32x32bit
General Register
File is best for
compiler.

• No separate Address
or Accum Regs

• Per-Thread

Device
DDR

Memory

 Stanford CS348K, Fall 2018

Google’s Pixel Visual Core
▪ Programmable Image Processing Unit (IPU) in Google Pixel 2 phone

- Augments capabilities of Qualcomm Snapdragon SoC

▪ Designed for energy-efficient image
processing
- Each core = 16x16 grid of 16 bit

mul-add ALUs
- Goal: 10-20x more efficient than

CPU/GPU on SoC

▪ Programmed using Halide and
Tensorflow

 Stanford CS348K, Fall 2018

Class discussion:
Google Pixel Visual Core

 Stanford CS348K, Fall 2018

Question
▪ What is the role of an ISA? (e.g., x86)

Answer: interface between program definition (software) and
hardware implementation

Compilers produce sequence of instructions

Hardware executes sequences of instructions as efficiently as possible
(As shown earlier in lecture, many circuits used to implement/preserve
this abstraction, not execute the computation needed by the program)

 Stanford CS348K, Fall 2018

New ways of defining hardware
▪ Verilog/VHDL present very low level programming abstractions for

modeling circuits (RTL abstraction: register transfer level)
- Combinatorial logic
- Registers

▪ Due to need for greater efficiency, there is significant modern
interest in making it easier to synthesize circuit-level designs
- Skip the ISA, directly synthesize circuits needed to compute the tasks defined by a

program.
- Raise the level of abstraction for direct hardware programming

▪ Examples:
- C to HDL (e.g., ROCCC, Vivado)
- Bluespec
- CoRAM [Chung 11]
- Chisel [Bachrach 2012]

 Stanford CS348K, Fall 2018

Compiling image processing pipelines directly to HW

▪ Darkroom [Hegarty 2014]

▪ Rigel [Hegarty 2016]

▪ RIPL [Stewart 2018]

▪ Motivation:
- Convenience of high-level description of image processing

algorithms (like Halide)

- Energy-efficiency of hardware implementations
(particularly important for high-frame rate, low-latency, always
on, embedded/robotics applications)

 Stanford CS348K, Fall 2018

Optimizing for minimal buffering
▪ Recall: scheduling Halide programs for CPUs/GPUs

- Key challenge: organize computation so intermediate buffers fit in caches

▪ Scheduling for hardware:
- Key challenge: minimize size of intermediate buffers (keep buffered data

spatially close to combinatorial logic)

out(x) = (in(x-1) + in(x) + in(x+1)) / 3.0

out_pixel = (buf0 + buf1 + buf2) / 3
buf0 = buf1
buf1 = buf2
buf2 = in_pixel

Consider 1D convolution:

Efficient hardware implementation: requires storage for 3 pixels in registers

buf1buf0 buf2
arithmetic

input pixel
(from sensor)output

“Shift” new pixel in

 Stanford CS348K, Fall 2018

“Line buffering”

out(x,y) = (in(x,y-1) + in(x,y) + in(x,y+1)) / 3.0

let buf be a shift register containing 2*WIDTH+1 pixels

// assume: no output until shift register fills
out_pixel = (buf[0] + buf[WIDTH] + buf[2*WIDTH]) / 3.0
shift(buf); // buf[i] = buf[i+1]
buf[2*WIDTH] = in_pixel

Consider convolution of 2D image in vertical direction:

Efficient hardware implementation:

arithmetic
input pixel

(from sensor)output

buf[0] buf[2*WIDTH]buf[WIDTH]

buf[2*WIDTH]

buf[WIDTH]
buf[0] buf[1]

input image:
WIDTH pixels

 Stanford CS348K, Fall 2018

Rigel
▪ Provides set of well-defined building

hardware blocks which can be
assembled into image processing
data flow graphs

▪ Provides programmer service of
gluing modules in a dataflow graph
together to form a complete
implementation

Downsample Y
Scanline Order

X XX X

X XX X

X XX X X XX X

Modules like downsample have a known total number of input/out-
put tokens, but a latency (number of firings before each output ac-
tually appears) that varies within a bounded number of firings. We
call modules with this property variable-latency modules.

Embedding variable-latency modules in our architecture requires
extensions beyond statically-scheduled SDF. Followup work on im-
proving the functionality of SDF has taken either a static or dy-
namic scheduling approach. Static scheduling work, such as cy-
clostatic dataflow, increases the flexibility of SDF but keeps some
restrictions that allow for static analysis [Bilsen et al. 1995]. These
models keep some or all of SDF’s deadlock and buffering proper-
ties, at the expense of added scheduling complexity [Bilsen et al.
1995; Murthy and Lee 2002]. Dynamic scheduling approaches
such as GRAMPS place no restrictions on the number of tokens
that can be produced or consumed each firing, but also cannot prove
any properties about deadlock or buffering [Sugerman et al. 2009].
Prior work exists on compiling SDF graphs to hardware (such as
[Horstmannshoff et al. 1997]), but to our knowledge no system ex-
ists that supports variable-latency modules.

Rigel takes a hybrid approach between SDF and dynamic schedul-
ing, which we call variable-latency SDF. We restrict our pipeline
to be a Directed Acyclic Graph (DAG) of SDF nodes. However,
we allow nodes to have variable latency, and implement the SDF
execution in hardware using dynamic scheduling. We use first-in-
first-out (FIFO) queues to hide latency variation, creating a graph
of kernels that behaves at the top level similarly to a traditional SDF
system. This allows us to use SDF to prove that the pipeline will not
deadlock, but also support the variable-latency modules we need for
our target applications.

2.3 Image Processing Languages

Halide is a CPU/GPU image processing language with a separate
algorithm language and scheduling language [Ragan-Kelley et al.
2012]. Halide’s scheduling language is used to map the algorithm
language into executable code, based on a number of loop trans-
forms. Halide’s algorithm and scheduling languages are general, so
making scheduling decisions requires either programmer insight,
autotuning, or heuristics [Mullapudi et al. 2016]. However, experi-
menting with different Halide schedules is faster than rewriting the
code by hand in lower-level languages like C.

Rigel was inspired by Halide’s choice to focus on programmer pro-
ductivity instead of automated scheduling, which often necessitates
a loss in flexibility. Rigel attempts to make an equivalent system
for hardware, where we allow the user manual control of a set of
flexible and powerful hardware tradeoffs with more convenience
and ease of experimentation than is possible in existing hardware
languages like Verilog.

2.4 High-Level Synthesis

An emerging technology in recent years is high-level synthesis
(HLS), which takes languages such as C or CUDA and compiles
them to hardware. For example, Vivado synthesizes a subset of C
into a Xilinx FPGA design guided by a number of pragma annota-
tions [Vivado 2016]. In our experience, CPU-targeted image pro-
cessing code requires extensive modification to perform well with
HLS tools.

Line buffer

Core Modules

Expr

Math Expr
{tap name}

Tap Constant

11 1 1 1

Multi-Rate Modules

Higher-Order Modules

Module Definition

Module Name

Module Application

Fn. Name

1/N 1

Devectorize

1 1/N

Vectorize

1/X*Y 1

Upsample*

Downsample*

Map(fn,N)

X,Y

1/X*Y1 X,Y

Reduce(fn,N) ReduceSeq(fn,N)

v

W,H

1 1/N
N N

1/N1
1

FilterSeq*

Figure 3: List of the built-in modules in Rigel. As in SDF, numbers
on edges indicate the input and output rates. (*) indicates variable-
latency modules.

Rigel is a higher-level programming model than languages like C.
In particular, Rigel performs domain-specific program checking us-
ing SDF rules, and contains domain-specific image processing op-
erations such as line buffering. In the future, we may consider HLS
as a compile target for Rigel instead of Verilog to simplify our im-
plementation.

3 Multi-Rate Line-Buffered Pipelines

We now describe the multi-rate line-buffered pipeline architecture,
and show how it can be used to implement advanced image pro-
cessing pipelines. Applications are implemented in our system by
creating a DAG of instances of a set of built-in static and variable-
latency SDF modules. The core modules supported by our archi-
tecture are listed in figure 3.

As in synchronous dataflow, each of our modules has an SDF input
and output rate. Our modules always have rates M/N ≤ 1, which
indicates that the module consumes/produces a data token on aver-
age every M out of N firings. Each data token in our system has an
associated type. Our type system supports arbitrary-precision ints,
uints, bitfields, and booleans. In addition, we support 2D vectors
and tuples, both of which can be nested.

3.1 Core Modules

Our architecture inherits a number of core modules from the line-
buffered pipeline architecture.

Our line buffer module takes a stream of pixels and converts it
into stencils. Many of our modules can operate over a range of
types. The line buffer has type A → A[stencilW, stencilH] for
an arbitrary type A, indicating that its input type is A and output
type is the vector A[stencilW, stencilH].

A Math Expr is an arbitrary expression built out of primitive math-
ematical operators (+,*,≫, etc). Math exprs also include operations
for slicing and creating vectors, tuples, etc. Our math exprs support
all of the operators in Darkroom’s image functions plus some ad-
ditional functionality. In particular, we added arbitrary precision
fixed-point types to represent non-integer numbers. Since FPGAs
do not have general floating point support, we found that better sup-
port for fixed-point types was necessary. We also include some
primitive floating point support, such as the ability to normalize
numbers.

Tap Constants are programmable constant values with arbitrary
type. Taps can be reset at the start of a frame, but cannot be modi-
fied while a frame is being computed.

These core modules can be used to implement a pipeline that
matches hardware produced by the line-buffered pipeline architec-
ture. For example, we can use a 4×4 stencil line buffer, a math expr
that implements convolution (multiplies and a tree sum unrolled),
and a tap constant with the convolution kernel to get a line-buffered
pipeline:

Input
uint32

4,4

Convolution
{kernel}

uint32[4,4]
Output
 uint32uint32[4,4]

3.2 Higher-Order Modules

Our architecture has higher-order modules, which are modules built
out of other modules. Map takes a module with type A → B and
lifts it to operate on type A[N] → B[N] by duplicating the module
N times. Reduce takes a binary operator with type {A,A} → A
and uses it to perform a tree fold over an vector of size N , producing
a module with type A[N] → A.

We can use map and reduce to build the convolution function from
modules in our architecture, instead of creating it by hand as math
ops. We also show a module definition, which defines a pipeline
so that it can be reused multiple times later. We parameterize the
pipeline over stencil width/height. This is not a core feature of our
architecture, but is instead accomplished with metaprogramming:

* +
Map(*,W,H) Reduce(+,W,H)

Convolve(W,H)

W,HW,H
Output
uint32

Input
uint32[4,4]
Kernel

uint32[4,4]

Our higher-order modules can also be used to implement space-
time tradeoffs. Implementing space-time tradeoffs in our system
involves creating multiple implementations of an algorithm with a
range of parallelisms. We formally define parallelism, p, to be the
width of the datapaths in the pipeline. For example, p=2 indicates
that the pipeline can process two pixels per firing, p=1/2 indicates
that the pipeline can only do half a pixel’s worth of computation per
firing.

Here we demonstrate an 8-wide data-parallel implementation of
convolution (p=8). We use the map operator to make 8 copies of
the Convolve module we defined above. The line buffer module
shown previously can be configured to consume/produce multiple
stencils per firing. To feed this pipeline with data, we configure
the runtime system to provide a vector of 8 pixels as input. These
changes yield a pipeline that can produce 8 pixels/firing:

Input
uint32[8] 4,4, 8 wide

{kernel}

uint32[4,4][8]

Output
uint32[8]Convolve(4,4)

uint32[4,4][8]

8

3.3 Multi-Rate Modules

Next we introduce a number of our architecture’s multi-rate mod-
ules. We first show multi-rate modules that are used to reduce the
parallelism of a pipeline (p<1), so designs can trade parallelism for
reduced area.

To reduce parallelism, we need to perform a computation on less
than a full stencil’s worth of data. We accomplish this with the
devectorize module. Devectorize takes a vector type, splits it into
smaller vectors, and then outputs the smaller vectors over multi-
ple firings. With 2D vectors we devectorize the rows. Vectorize
performs the reverse operation, taking a small vector over multiple
firings and concatenating them into a larger vector:

1/4 1
uint32[4] uint32[1]

1 1/4
uint32[1] uint32[4]

Devectorize Vectorize

ReduceSeq is a higher-order module that performs a reduction se-
quentially over T firings (type A → A). Here we combine devec-
torize (which increases the number of tokens, at lower parallelism)
and reduceSeq (which decreases the number of tokens). The convo-
lution module can now operate on stencil size 1×4 instead of 4×4,
reducing its amount of hardware by 4×. We refer to this pipeline
as the reduced parallelism ConvRP:

Input
uint32[W,H]

Output
uint32

1/T 1

1/T 1
Convolve(W/T,H)

uint32[W/T,H]

v1 1/T+
ReduceSeq(+,T)

ConvRP(W,H,T)

Kernel
uint32[W,H]

uint32[W/T,H]

We can connect our new ConvRP module to the line buffer and
convolution kernel as in the previous examples:

Input
uint32

4,4 Output
uint32ConvRP(4,4,4)

{kernel}

1/4
1/4

1/4

The total throughput of a pipeline is limited by the module instance
with the lowest throughput. In this example, ConvRP has input/out-
put rate of 1/4, which means that the resulting pipeline can only
produce one output every 4 firings.

3.4 Multi-Scale Image Processing Modules

Next, we introduce multi-rate modules in our architecture that are
used to implement multi-scale image processing. Rigel’s down-
sample module discards pixels based on the user’s specified in-
teger horizontal and vertical scale factor (module type A → A).
Similarly, Rigel’s upsample module upsamples a stream by dupli-
cating pixels in X and Y a specified number of times (module type
A → A):

1/X*Y 1
X,Y

1/X*Y1 X,Y

Upsample(X,Y) Downsample(X,Y)

We can use these modules to downsample following a convolution,
which is a component of a pipeline for computing Gaussian pyra-
mids. A basic implementation simply adds a downsample module
to the convolution example shown previously:

4,4
2,2Convolve(4,4)Input

uint32

1/4 Output
uint32

1

{kernel} Downsample(2,2)

Example: 4x4 convolution in Rigel

[Hegarty et al. 2016]

 Stanford CS348K, Fall 2018

Halide to hardware
▪ Reinterpret common Halide scheduling primitives

to describe features of hardware circuits
- unroll() —> replicate hardware

▪ Add new primitive accelerate()
- Defines granularity of accelerated task
- Defines throughput of accelerated task 1 Func unsharp(Func in) {

2 Func gray, blurx, blury, sharpen, ratio, unsharp;
3 Var x, y, c, xi, yi;
4

5 // The algorithm
6 gray(x, y) = �.3*in(�, x, y) + �.6*in(1, x, y) + �.1*in(2, x, y);
7 blury(x, y) = (gray(x, y-1) + gray(x, y) + gray(x, y+1)) / 3;
8 blurx(x, y) = (blury(x-1, y) + blury(x, y) + blury(x+1, y)) / 3;
9 sharpen(x, y) = 2 * gray(x, y) - blurx(x, y);

10 ratio(x, y) = sharpen(x, y) / gray(x, y);
11 unsharp(c, x, y) = ratio(x, y) * input(c, x, y);
12

13 // The schedule
14 unsharp.tile(x, y, xi, yi, 256, 256).unroll(c)
15 .accelerate({in}, xi, x)
16 .parallel(y).parallel(x);
17 in.fifo_depth(unsharp, 512);
18 gray.linebuffer().fifo_depth(ratio, 8);
19 blury.linebuffer();
20 ratio.linebuffer();
21

22 return unsharp;
23 }

Accelerator Interface

unsharp
gray

blury blurx sharpen
ratio

in

Figure 3: Algorithm and schedule code for the unsharp func-
tion, and its corresponding DAG. accelerate primitive defines
the accelerator scope from in to unsharp.

from the algorithm itself. However, the scheduling primitives
also provide more control over the generated hardware, as
described in the following sections.

3. Language

The Halide language tackles the problem of finding the most
efficient implementation for an application by separating the
computation to be performed (the algorithm) from the order
in which it is done (the schedule). The language provides
scheduling primitives which control high-level scheduling de-
cisions like tiling, loop reordering, and parallel execution,
making it easy to experiment with various tradeoffs between
locality, parallelism and redundant re-computation.

Our task is to extend these semantics to cover heteroge-
neous systems, mostly involved with mapping Halide func-
tions onto a specialized hardware engine. Specifically, the
schedule should include:
• The scope and interface of the hardware accelerator pipeline.
• The granularity of the accelerator launch task, i.e. the size

of output image block the hardware produces per launch.
• The amount of parallelism implemented in the hardware da-

tapath, which affects the throughput of each pipeline stage.
• The allocation of buffers, specifically line buffers, that opti-

mally trades storage resources for less re-computation.
• The number of delay register slices needed to match varying

computation latencies.
Many hardware scheduling choices have analogues in CPU

scheduling, and Halide already has primitives to describe them.
For example, both CPU and hardware schedules must describe
computation order and memory allocation. In such cases, we
reuse as many of the existing primitives as possible. Ulti-
mately, we were able to achieve efficient hardware mapping
and hybrid CPU/accelerator execution using only two new
primitives and a bit of syntactic sugar.

The language of scheduling is best explained in the context
of an example. Figure 3 shows a simple unsharp mask filter
implemented in Halide. Unsharp masking is an image sharp-
ening technique often used in digital image processing. We
will use this as a running example throughout the paper, as it
demonstrates many important features of our system. The code
first computes a blurred gray-scale version of the input image
using a chain of three functions (gray, blury, and blurx), and
then amplifies the input based on the difference between the
original image and the blurred image.

The hardware schedule begins on line 14. unsharp.tile is
a standard Halide operation, which breaks an ordinary row-
major traversal (defined by the Vars x and y) into a blocked
computation over tiles (here, 256⇥256 pixels). The variables
xi and yi represent the inner loops of the blocked computation
which work pixel by pixel, while x and y then become the
outer loops for iterating over blocks.

With the image now broken into constant-sized pieces, we
can apply hardware acceleration. Our first new primitive is
f.accelerate(inputs, innerVar, blockVar), which defines
both the scope and the interface of the accelerator and the
granularity of the accelerator task. The first argument, inputs,
specifies a list of Funcs for which data will be streamed in. The
accelerator will use these inputs to compute all intermediate
Funcs to produce the result f. In this example, this is the
sequence of computation through gray, blury, blurx, sharpen,
and ratio that produces unsharp from in (Figure 3, bottom).

The block loop variable blockVar defines the granularity
of the computation: the hardware will compute an entire tile
of the size that blockVar counts; in this case, 256⇥256 pix-
els. The inner loop variable innerVar controls the throughput:
innerVar will increment each cycle, in this case producing one
pixel each time. To create higher-throughput hardware, we
could use Halide’s split primitive to split the innerVar loop
into two, and accelerate with the outer one as the hardware
stride size.

Our second new primitive is src.fifo_depth(dest, n). It
specifies a FIFO buffer with a depth of n, instantiated between
function src and function dest. In the unsharp example, both
ratio and unsharp consume multiple data streams (sharpen is
fused into ratio), so the latency needs to be balanced across
the inputs. The optimal FIFO depths in the DAG can be
solved automatically as an integer linear programming (ILP)
problem [13], so we can eventually automate this decision, but
for now we specify and tune it by hand.

4

Unit of work given to accelerator:
256x256 tile (one iteration of x loop)

Unit of work done per cycle:
one pixel (one iteration of xi loop)

Parallel units for rgb

[Pu et al. 2017]

 Stanford CS348K, Fall 2018

Image processing for automotive/robotics

NVIDIA Drive Xavier

MobileEye EyeQ Processor
Computer Vision accelerator for

automotive applications

https://en.wikipedia.org/wiki/Mobileye

 Stanford CS348K, Fall 2018

Summary
▪ Image processing workloads: demand high performance

- Historically: accelerated via ASICs for efficiency on mobile devices

- Rapidly evolving algorithms dictate need for programmability

- Workload characteristics are amenable to hardware specialization

▪ Active industry efforts: programmable image processors
- Gain efficiency via wide parallelism and by limiting data flows

▪ Active academic research topic: increasing productivity of
custom hardware design
- Image processing is an application of interest

