Lecture 5:

Image Processing Hardware

Visual Computing Systems
Stanford C5348K, Fall 2018

Image processing workload characteristics

m “Pointwise"” operations
- output_pixel = f(input_pixel)

m “Stencil” computations (e.g., convolution, demosaic, etc.)
= Output pixel (x,y) depends on fixed-size local region of input around (x,y)

m Lookup tables
- e.g., contrast s-curve

m Multi-resolution operations (upsampling/downsampling)
- e.g., Building Gaussian/Laplacian pyramids

m Fast-fourier transform

- We didn't talk about many Fourier-domain techniques in class (but readings
had many examples)

m Long pipelines (DAGs) of these operations

Stanford (S348K, Fall 2018

So far, the discussion in this class has focused
on generating efficient code for multi-core
processors such as CPUs and GPUs.

Stanford (S348K, Fall 2018

Consider the complexity of executing an
instruction on a modern processor...

Read instruction —I Address translation, communicate with icache, access icache, etc.
Dec0de instruction —I Translate op to uops, access uop cache, etc.

Check for dependencies/pipeline hazards

|dentify available execution resource

Use decoded operands to control register file (retrieve data)

Move data from register file to selected execution resource
Perform arithmetic operation

Move data from execution resource to register file

Use decoded operands to control write to register file SRAM

Question:
How does SIMD execution reduce overhead when executing certain types of computations?

What properties must these computations have?

Stanford (S348K, Fall 2018

Fraction of energy consumed by different parts of
instruction pipeline (H.264 video encoding) ,..cce.sa0

no SIMD/VLIW vs. SIMD/VLIW

Y\

100%

90%

80%

F0%

60%

50%

A0%

30%

20%

10%

0%

RISC

et
R
(=8
i o =2
i
=
(]

IME
integer motion estimation

= o D ? = Z
= o = 5' o
Z o = 3 o
= 2
= =
u I
FME IP
fractional (subpixel) intraframe prediction,
motion estimation DTC, quantization

FU = functional units
RF =register fetch
Ctrl = misc pipeline control

Pip = pipeline registers (interstage)
D-$ = data cache
IF = instruction fetch + instruction cache

RISC

SIMD+VLIW
OP Fus

CABAC

arithmetic encoding

O FU
H RF
m Ctl
M Pip
W D-5
M IF

Stanford (S348K, Fall 2018

Modern So(’s feature ASIC for image processing

® Implement basic RAW to RGB camera pipeline in silicon

- Traditionally has been critical for real-time processing like
viewfinder or video

Qualcomm Snapdragon SoC

: Snapdragon Adreno 540
| : X16 LTE modem G"'Psi:; g;c:;)ssm

§ = Display Video
Wl"Fl rocessing Unit Processing Unit .
(DPU) (VPU)

Hexagon DSP

Qualcomm

Spectra 180
Camera

Image Signal Processor [
ASIC for processing camera g A::t.i:o::;io Kryo 280 CPU
sensor pixels :

Qualcomm® Qualcomm ;
|Zat™ Location Haven Security

Stanford (S348K, Fall 2018

Digital Signal Processor (DSP)

m Typically simpler instruction stream control paths
m Complexinstructions (e.g., SIMD/VLIW): perform many operations per instruction

Example: Qualcomm Hexagon

Used for modem, audio, and (increasingly)
image processing on Qualcomm Snapdragon
SoC processors

Below: innermost loop of FFT
29 “RISC” ops per cycle

64-bit Load and

64-bit Store with
post-update

addressin
J \{ R17:16 = MEMD(RO++M1)
MEMD(R6++M1) = R25:24

Variable sized
instruction packets
(1 to 4 instructions
per Packet)

Instruction
Cache

Instruction Unit

* Dual 64-bit execution units
« Standard 8/16/32/64bit data

« SIMD vectorized MPY / ALU

* Up to 8 16b MAC/cycle

Device) 'J l

DDR Cache
Memory /TCM
. Dual 64-bit = Data Unit Data Unit Execqtion
load/store (Load/ (Load/ Unit
units Store/ Store/ (64-bit
- Also 32-bit ALU) ALU) Vector)
ALU Data Cache

Register File/Thread

Complex multiply with

R20 = CMPY(R20, R8):<<1:rnd:sat «—— round and saturation

R11:10 = VADDH(R11:10, R13:12)

A

/ }:endloopO

Zero-overhead loops Vector 4x16-bit Add

e Dec count | | | |

e Compare | | | |

e Jump top

y y
£) (+
A

v v v
) (e
y

« 2 SP FMA/cycle

types

/ SHIFT, Permute, BitOps

Execution

Unified 32x32bit
General Register
File is best for
compiler.

No separate Address
or Accum Regs
Per-Thread

Stanford (S348K, Fall 2018

Google’s Pixel Visual Core

®m Programmable Image Processing Unit (IPU) in Google Pixel 2 phone
- Augments capabilities of Qualcomm Snapdragon So(

o ° ° IO ° L < ‘:f Iﬂ i PI
m Designed for energy-efficient image ! it ety =

processing - IPU-10 Block .
. . 1 B IPU IPU
- Each core =16x16 grid of 16 bit Sl Core2 | Core1
mul-add ALUs B ey 3
- Goal: 10-20x more efficient than g Core4 | Core3
CPU/GPU on SoC R PU IPU
T |0 | Core6 | Coreb
: : el IPU IPU,
B Programmed using Halide and 3+ oxl "Core8' | Corell:
Tensorflow SRS -

Stanford (S348K, Fall 2018

Class discussion:
Google Pixel Visual Core

Stanford (S348K, Fall 2018

Question

m What is the role of an ISA? (e.g., x86)

Answer: interface hetween program definition (software) and
hardware implementation

Compilers produce sequence of instructions

Hardware executes sequences of instructions as efficiently as possible

(As shown earlier in lecture, many circuits used to implement/preserve
this abstraction, not execute the computation needed by the program)

Stanford (S348K, Fall 2018

New ways of defining hardware

m Verilog/VHDL present very low level programming abstractions for

modeling circuits (RTL abstraction: register transfer level)

- Combinatorial logic
- Registers

® Due to need for greater efficiency, there is significant modern

interest in making it easier to synthesize circuit-level designs

- Skip the ISA, directly synthesize circuits needed to compute the tasks defined by a
program.

- Raise the level of abstraction for direct hardware programming

m Examples:

- (Cto HDL (e.g., ROCCC, Vivado)
- Bluespec

- CoRAM [Chung 11]

= Chisel [Bachrach 2012]

Stanford (S348K, Fall 2018

Compiling image processing pipelines directly to HW

m Darkroom [Hegarty 2014]
m Rigel [Hegarty 2016}
m RIPL [Stewart 2018]

B Motivation:

- Convenience of high-level description of image processing
algorithms (like Halide)

- Energy-efficiency of hardware implementations

(particularly important for high-frame rate, low-latency, always
on, embedded/robotics applications)

Stanford (S348K, Fall 2018

Optimizing for minimal buffering

m Recall: scheduling Halide programs for CPUs/GPUs
- Key challenge: organize computation so intermediate buffers fit in caches

m Scheduling for hardware:

- Key challenge: minimize size of intermediate buffers (keep buffered data
spatially close to combinatorial logic)

Consider 1D convolution:
out(x) = (in(x-1) + in(x) + in(x+1l)) / 3.0

Efficient hardware implementation: requires storage for 3 pixels in registers
out _pixel = (buf@ + bufl + buf2) / 3

bufo = bufl | o
bufl = buf2 “Shift” new pixel in
buf2 = 1n_pixel

input pixel

< buf0 [¢—— bufl [« buf2 [—
(from sensor)

output <«—| grithmetic

<
<

Stanford (S348K, Fall 2018

“Line buffering”

Consider convolution of 2D image in vertical direction:

input image:
WIDTH pixels

. . . buf[0] buf[1]
out(x,y) = (in(x,y-1) + 1in(x,y) + 1n(x,y+1l)) / 3.0 buf[WIDTH]
4

. g
. K
.
g
H o
*, u Q
4 . Q
* .,
» . .
.A
L3 ’A
.

buf[2*WIDTH]

Efficient hardware implementation:

let buf be a shift register containing 2*WIDTH+1 pixels

out_pixel = (buf[0] + buf[WIDTH] + buf[2xWIDTH]) / 3.0
shift(buf);
buf[2*WIDTH] = 1in_pixel

buif[O] buf[V\!IDTH] buf[2*\{VIDTH]

v v v

input pixel
(from sensor)

e

output <«— arithmetic | |

AA A

Stanford (S348K, Fall 2018

Rigel

Provides set of well-defined building
hardware blocks which can be
assembled into image processing
data flow graphs

Provides programmer service of
gluing modules in a dataflow graph
together to form a complete
implementation

Example: 4x4 convolution in Rigel

»

Input
uint32

{kernel}

[Hegarty et al. 2016]

Core Modules

T S - RS
Line buffer Math Expr Tap Constant
Module Name _
e e

Module Definition Module Application

Higher-Order Modules

1/N
[- ~LED- Y EDH

Map(fn,N) Reduce(fn,N) ReduceSeq(fn,N)

Multi-Rate Modules

" 1
1/N 1 1/XY 1 1/N
-1 > —> —p _1’ —
—
Devectorize Upsample* FilterSeq*
1 1/N 1 1/X*Y
—> W > —> —-
Vectorize Downsample*

—, Output
uint32

Stanford (S348K, Fall 2018

[Pu et al. 2017]

Halide to hardware

B Reinterpret common Halide scheduling primitives

to describe features of hardware circuits
- unroll() —> replicate hardware
B Add new primitive accelerate()
- Defines granularity of accelerated task
runc unsharp(runc in) A - Defines throughput of accelerated task

Func gray, blurx, blury, sharpen, ratio, unsharp;
Var x, y, ¢, xi, yi;

// The algorithm

gray(x, y) = 0.3*in(0, x, y) + 0.6*in(1, x, y) + 0.1*%1n(2, X, Vy);
blury(x, y) = (gray(x, y-1) + gray(x, y) + gray(x, y+1)) / 3;
blurx(x, y) = (blury(x-1, y) + blury(x, y) + blury(x+1, y)) / 3;
sharpen(x, y) = 2 * gray(x, y) - blurx(x, y);

ratio(x, y) = sharpen(x, y) / gray(x, y);

unsharp(c, x, y) = ratio(x, y) * input(c, X, y); Parallel units for rgb

// The schedule
unsharp.tile(x L,_yl, 256, 256) Unit of work done per cycle:

.accelerate({in}, xi, x)

-parallel(y).parallel(x); one pixel (one iteration of xi loop)
in.fifo_depth(unsharp, 512);

gray.linebuffer().fifo_depth(ratio, 8); o o .
e Lury. Linebufferc) Unit of work given to accelerator:
ratio.linebuffer(); 256x256 tile (one iteration of x loop)
return unsharp;

)

Stanford (S348K, Fall 2018

Image processing for automotive/robotics

-
e
* -

NVIDIA Drive Xavier

MobileEye EyeQ Processor

Computer Vision accelerator for
automotive applications

https://en.wikipedia.org/wiki/Mobileye Stanford CS348K, Fall 2018

Summary

B |mage processing workloads: demand high performance

- Historically: accelerated via ASICs for efficiency on mobile devices
- Rapidly evolving algorithms dictate need for programmability
- Workload characteristics are amenable to hardware specialization

B Active industry efforts: programmable image processors

- Gain efficiency via wide parallelism and by limiting data flows

B Active academic research topic: increasing productivity of
custom hardware design

- Image processing is an application of interest

Stanford (S348K, Fall 2018

