Lecture 3:

The Camera Image
Processing Pipeline

(part 2: tone mapping and autofocus)

Visual Computing Systems
Stanford C5348K, Fall 2018

Acknowledgement to Marc Levoy (Stanford/Google) for various slides used in this lecture.

Previous class and today...

The pixels you see on screen are quite different than the
values recorded by the sensor in a modern digital camera.

Computation is now a fundamental aspect of producing
high-quality pictures.

\

Sensor output

Y P |)
N s ! "
N~ Y I = =<
= (&N,) ‘
U "\T Y \ » ' \" (‘\ | = “ ‘ &
; - 2 \ ‘|“ : ; >
. ; 3 : ~— i . ! . Yo¢ 4 oY = s S £
ll ,’ " “ d - A1 —h— —— T 1= v \\ . \‘: (‘l ‘
1oy =S &1 \ d \ !' 2
o ' B MR RERER-N J 048 ik
£y i
5 -. e el 8 ,Iil
) 4 . o 1 & b L
, B e] .

o GRS

B R o S WA ML 3

R R N e e T SR
/;\\;(S R R f

Beautiful |ma that
impresses your friends
on Instagram

Stanford (S348K, Fall 2018

Summary: simplified image processing pipeline

m (Correct pixel defects
® Align and merge

m Correct for sensor bias (using measurements of optically black pixels)

m Vignetting compensation (10-12 bits per pixel)
. 1 intensity value per pixel
® White balance Pixel values linear in energy
u .
Demosaic 3x12 bits per pixel
B Denoise RGB intensity per pixel

: : . Pixel values linear in energy
B Gamma Correction (non-linear mapping)

® Local tone mapping 3x8-bits per pixel

m Final adjustments sharpen, fix chromatic aberrations, Pixel values perceptually linear

hue adjust, etc.

Stanford (S348K, Fall 2018

Auto Exposure and Tone Mapping

255 4

Global tone mapping

B Measured image values: 10-12 bits / pixel, but common image formats (8-bits/ pixel)
B How to convert 12 bit number to 8 bit number?

out(x,y) = f(in(x,y))

Allow many pixels to
clamp to black (detail
in bright regions)

12

255 4

255 4

255 4

low resolution
throughout entire
range

Allow many pixels to “blow
out” (detail in dark regions)

clamp darkest darks and
brightest brights to reserve
resolution in midtowns

>

212

212

>

212

Stanford (S348K, Fall 2018

Global tone mapping

255 4

Allow many pixels to “blow
out” (detail in dark regions)

255 4

212

Allow many pixels to
clamp to black (detail
in bright regions)

12

Stanford (S348K, Fall 2018

Local tone mapping

m Different regions of the image undergo different tone mapping
curves (preserve detail in both dark and bright regions)

Stanford (S348K, Fall 2018

Local tone adjustment

Short‘ Exposure -

s 11
Pixel values eyt 8 ’5'

Weights

Improve picture’s aesthetics by locally
adjusting contrast, boosting dark
regions, decreasing bright regions

(no physical basis)
Combined image

(unique weights per pixel) | . 5
Image credit: Mertens 2007 Stanford (S348K, Fall 2018

Challenge of merging images

-‘ "i‘

o vv
, h

Merged result Merged result
(based on weight masks) (after blurring weight mask)
Notice heavy “banding” since absolute Notice “halos” near edges

intensity of different exposures is different Stanford CS348K, Fall 2018

Review:
Frequency interpretation of images

Stanford (S348K, Fall 2018

Representing sound as a superposition of
frequencies

=i \ /NSNS NSNS

f2(x) = sin(2xx)

fa(x) = sin(4drx)

Fx) = f1(x) + 0.75 fo(x) + 0.5 fx) [v A vA / ;

Stanford (S348K, Fall 2018

Audio spectrum analyzer: representing sound
as a sum of its constituent frequencies

4
-18 .
24 |
-30 A
-36 -
-42 |
-48 .
-54 .
-60 4
-66 -
-7
-78 .
-84 -
-90

-96

U
L
o0
L=
—’
-l
Q.
U

-102
-108

31.5

T

Intensity of
low-frequencies (bass)

Image credit: ONYX Apps

16k

1

Intensity of
high frequencies

Stanford (S348K, Fall 2018

Fourier transform

m (Convert representation of signal from spatial/temporal
domain to frequency domain by projecting signal into its
component frequencies

1€ = [r@emetaa

— /_OO f(x)(cos(2méx) — isin(2nw&x))dx

m 2D form:

F(u, v) = / / F (2, y)e 20 dpgy

Stanford (S348K, Fall 2018

Visualizing the frequency content of images

Spatial domain result Spectrum

Stanford (S348K, Fall 2018

Low frequencies only (smooth gradients)

Spatial domain result Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude

Stanford (S348K, Fall 2018

Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)

Stanford (S348K, Fall 2018

Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)

Stanford (S348K, Fall 2018

High frequencies (edges)

Spatial domain result Spectrum (after high-pass filter)
(strongest edges) All frequencies below threshold
have 0 magnitude

Stanford (S348K, Fall 2018

An image as a sum of its frequency components

Stanford (S348K, Fall 2018

Another (linear) sharpening filter

blurred = g % [

fine = | — blurred «———— Extract high frequencies

sharpened = I + 0.5 X fine «——— Boost high frequencies

Stanford (S348K, Fall 2018

But what if we wish to localize image
edits both in space and in frequency?

(Adjust certain frequency content of image,
in a particular region of the image)

Stanford (S348K, Fall 2018

Downsample

m Step 1: Remove high frequencies
B Step 2: Sparsely sample pixels (in this example: every other pixel)

hn"!l!:a-

r—

n - ~— 2 PErere T % i - = ; =
!]

’ Gr k
"ﬂmn ‘ﬂml ""“““Nl* ‘ —
, A -‘ '
N = e é,_;;w;,, t{_ ==2i- :

EIREEE! 3‘&; ‘EBELLE L
"?‘fii-' v --“-‘ri'{;’-‘?‘f%"h- “‘ |
: n)] | 1 | ' N , } _ | :
il izl 14 AR A ‘ i B Y i ¥ 5 E ! 75‘52‘47? Ik
! , dddds
i H.‘d] g 1 El‘f ",i'r !-.5! 5 ';'gtgv | |

-
f" "ﬂl

m A" d‘-;

uﬁmmﬁm
u@mmumm@

Stanford (S348K, Fall 2018

Downsample

m Step 1: Remove high frequencies
B Step 2: Sparsely sample pixels (in this example: every other pixel)

float input[(WIDTH+2) x (HEIGHT+2)];
float output[WIDTH/2 * HEIGHT/2];

float weights[] = {1/64, 3/64, 3/64, 1/64, // 4x4 blur (approx Gaussian)
3/64, 9/64, 9/64, 3/64,
3/64, 9/64, 9/64, 3/64,
1/64, 3/64, 3/64, 1/64};

for (int j=0; jJ<HEIGHT/2; j++) {
for (int i=0; i<WIDTH/2; i++) {
float tmp = 0.°T;
for (int jj=0; jj<3; jj++)
for (int 11=0; 11<3; 1i++)
tmp += input[(2%j+jj)*x(WIDTH+2) + (2*i+1ii)] * weights[jj*3 + iil;
output[j*WIDTH/2 + 1] = tmp;

Stanford (S348K, Fall 2018

Upsample

Via bilinear interpolation of samples from low resolution image

Stanford (S348K, Fall 2018

Upsample

Via bilinear interpolation of samples from low resolution image

float input[WIDTH x HEIGHT];
float output[2*xWIDTH * 2xHEIGHT];

for (int j=0; jJ<2*kHEIGHT; j++) {
for (i1nt 1=0; 1<2xWIDTH; 1i++) {
int row = j/2;

int col = 1i/2;
float wl = (1%2) ? .75f : .25f:;
float w2 = (j%2) ? .75f : .25f;

output[j*2*xWIDTH + 1] = wl * w2 *x input[rowxWIDTH + col] +
(1.0-wl) *x w2 * input[rowxWIDTH + col+l] +
wl % (1-w2) *x input[(row+1)*WIDTH + col] +
(1.0-wl)*(1.0-w2) x input[(row+1l)*WIDTH + col+l];

Stanford (S348K, Fall 2018

Gaussian pyram

Go = image

Each image in pyramid contains increasingly low-pass filtered signal

down() = downsample operation
Stanford (5348K, Fall 2018

Gaussian pyramid

Stanford (S348K, Fall 2018

Gaussian pyramid

Stanford (S348K, Fall 2018

Gaussian pyramid

Stanford (S348K, Fall 2018

Gaussian pyramid

-

Y .o

Stanford (S348K, Fall 2018

Gaussian pyramid

Stanford (S348K, Fall 2018

Gaussian pyramid

Stanford (S348K, Fall 2018

Laplacian pyramid

Each level in Laplacian
yramid represents

increasingly high frequency

content from image

[Burt and Adelson 83] Stanford CS348K, Fall 2018

Laplacian pyramid

Stanford (S348K, Fall 2018

Laplacian pyramid

Question: how do you
reconstruct original image
from its Laplacian pyramid?

Stanford (S348K, Fall 2018

Laplacian pyramid

Lo= Go- up(G1)

Stanford (S348K, Fall 2018

Laplacian pyramid

L1=G1-up(Gy)

Stanford (S348K, Fall 2018

Laplacian pyramid

L= Gz - up(Gs)

Stanford (S348K, Fall 2018

Laplacian pyramid

Stanford (S348K, Fall 2018

Laplacian pyramid

Stanford (S348K, Fall 2018

Laplacian pyramid

Stanford (S348K, Fall 2018

Summary

m Gaussian and Laplacian pyramids are image representations
where each pixel maintains information about frequency
content in a region of the image

B Gi(x,y) — frequencies up to limit given by j
B Li(x,y) — frequencies added to Gi.1 to get G;

m Notice: to boost the band of frequencies in image around
pixel (x,y), increase coefficient Li(x,y) in Laplacian pyramid

Stanford (S348K, Fall 2018

Use of Laplacian pyramid in tone mapping

® Compute weights for all Laplacian pyramid levels
B Merge pyramids (image features) not image pixels
B Then“flatten” merged pyramid to get final image

Input Images Image - Laplacian Pyramid Weight Map - Gaussian Pyramid

Fused Pyramid Final Image

Stanford (S348K, Fall 2018

Challenges of merging images

Merged result Merged result

(after blurring weight mask) (based on multi-resolution pyramid merge)
Notice “halos” near edges

Why does merging Laplacian pyramids work better than merging image pixels?

Stanford (S348K, Fall 2018

Consider low and high exposures of an edge

Low Exposure High Exposure Weight Merged
Laplacian Pyramid Laplacian Pyramid Gaussian Pyramid (after flatten)

clipped

:

clipped

,\\/\,~J~/\dﬁ~/:;gelnagnﬂude

reduced, but detail
remains on both sides

LO

LO GO

L1 L1

/
@ |
« /T

L2

L3

\ 7]

\ &4
VAN

G3 —/—
G4

Stanford (S348K, Fall 2018

Consider low and high exposures of flat image region

Low Exposure High Exposure Weight Merged
Laplacian Pyramid Laplacian Pyramid Gaussian Pyramid (after flatten)
ANV (using hard weight
/\/\’\N\\NW\/\,\ change as an
example)
W smooth transition
L0 ’\/\’V‘A‘NW\/\[\ LO ’\/\’V‘A‘NW\/\[\ GO / despite sharp
weight change
—
L1 — 11 — 1 /
—
L2 L2 G2 /
—
E 13 63 —/—
—
G4

Stanford (S348K, Fall 2018

Summary: simplified image processing pipeline

m (Correct pixel defects
® Align and merge

m Correct for sensor bias (using measurements of optically black pixels)

m Vignetting compensation (10-12 bits per pixel)
. 1 intensity value per pixel
® White balance Pixel values linear in energy
u .
Demosaic 3x12 bits per pixel
B Denoise RGB intensity per pixel

: : . Pixel values linear in energy
B Gamma Correction (non-linear mapping)

® Local tone mapping 3x8-bits per pixel

m Final adjustments sharpen, fix chromatic aberrations, Pixel values perceptually linear

hue adjust, etc.

Stanford (S348K, Fall 2018

Auto Focus

Stanford (S348K, Fall 2018

What does a lens do?

Scene object 2

Recall: pinhole camera you
may have made in science class
(every pixel measures ray of
light passing through pinhole
and arriving at pixel)

o Pinhole

Sensor plane: (X,Y)

Pixel P1 Pixel P2
Pinhole Stanford (S348K, Fall 2018

What does a lens do?

- Scene object 1
““ “

Camera with lens: — S 4 Scene focal plane

¥~ Field of view

Scene object 2

‘Q
*
*
‘Q
*

Every pixel accumulates all
rays of light passing through
lens aperture and refracted to
location of pixel

. U . . V A . Y

In-focus camera: all rays of
light from one point in scene
arrive at one point on sensor

plane

—_— @ —— Sensorplane: (X,Y)
Pixel P1 Pixel P2

Stanford (S348K, Fall 2018

Out of focus camera

* .
“ "
* .
o *
* “

Out of focus camera: rays of
light from one point in scene
do not converge at point on
sensor

E_— ————7—————=> Lensaperture
TR ----—————-0--7, —r Sensor plane: (X,Y)

\ / Previous sensor
plane location

Circle of confusion
Stanford (S348K, Fall 2018

Out of focus camera

Scene object 2

‘Q
*
*
‘Q
*

Scene focal plane

Out of focus camera: rays of
light from one point in scene
do not converge at point on
sensor

Rays of light from different 7 ———" lensaperture
scene points converge at
single point on sensor

-_—— Sensor plane: (X,Y)
Pixel P1

Previous sensor
plane location

Stanford (S348K, Fall 2018

Sharp foreground / blurry background

Autofocus demos

B Phase-detection auto focus
- Common in SLRs

m (Contrast-detection auto focus
- Smartphone cameras

Demo credits: Marc Levoy and Stanford (5178 course staff Stanford CS348K, Fall 2018

Single lens reflex (SLR) camera

——
- -~
o~ aal
-

Pentaprism

/oooo0gppoo0o!
00000000000 |

100000000000/
__________ . : NOOU ’

Image credits: Nikon, Marc Levoy Stanford CS348K, Fall 2018

Split pixel sensor

| /) / " When both pixels have the
/(f w\/(‘ w\ same response, camerais in
., focus, why?

Gy W
o N
]
]
\
\
S R
T
//’#/
(%]
(& o]

3[\\\ ///,31
30d 30 30d
A TAI A WSS AR AL AL VLl A
o e
.14 15 13 29y 14 15 13 ‘]\
’ Y Now two pixels under each
311 1 .
o microlens (not one)
Image CrEdlt: NIkOﬂ Stanford C5348K, Fall 2018

What part of image should be in focus?

Canon EOS 5D Mark 1l Autofocus zones

m

SQUARE

PHOTO

Heuristics:
Focus on closest scene region

Put center of image in focus

Detect faces and focus on closest/largest face

VIDEO

Image credit: DPReview:

https://www.dpreview.com/articles/9174241280/configuring-your-5d-mark-iii-af-for-fast-action
Stanford (S348K, Fall 2018

Portrait mode (tonight’s reading)

® Smart phone cameras have small apertures
- Good: thin. lightweight lenses, often fast focus

- Bad: cannot physically create aesthetically please photographs with nice
bokeh, blurred background

m Answer: simulate behavior of large aperture lens (hallucinate image formed by
large aperture lens)

Segmentation

i \

Scene Depth
Estimate (note blurred background.

Blur increases with depth)
Stanford (5348K, Fall 2018

Image credit: [Wadha 2018]

Stanford (S348K, Fall 2018

Summary

® Computation now a fundamental part of producing a pleasing photograph
m Used to compensate for physical constraints (demosaic, denoise, lens corrections)

m Used to analyze image to guess system parameters (focus, exposure), or scene
contents (white balance, portrait mode)

® Used to make non-physically plausible images that have aesthetic merit

| Sensor output
(IIRAWII)
———»| Computation

Beautiful image that -
impresses your friends
on Instagram

Stanford (S348K, Fall 2018

Image processing workload characteristics

m “Pointwise"” operations
- output_pixel = f(input_pixel)

m “Stencil” computations (e.g., convolution, demosaic, etc.)
= Output pixel (x,y) depends on fixed-size local region of input around (x,y)

m Lookup tables
- eJd., contrast s-curve

m Multi-resolution operations (upsampling/downsampling)

m Fast-fourier transform

- We didn't talk about Fourier domain techniques in class (but Hasinoff 16
reading has many examples)

m Long pipelines of these operations

Upcoming classes: efficiently mapping these
workloads to modern processors

Stanford (S348K, Fall 2018

