Lecture 2;

The Camera Image
Processing Pipeline

Visual Computing Systems
Stanford C5348K, Fall 2018

Acknowledgement to Ren Ng (Berkeley), Marc Levoy (Stanford/Google) for various slides used in this lecture.



The next two lectures...

The pixels you see on screen are quite different than the
values recorded by the sensor in a modern digital camera.

Computation is now a fundamental aspect of producing
high-quality pictures.
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Part 1: image sensing hardware

(how a digital camera measures light, and how physical
limitations of these devices place challenges on software)
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Camera cross section

e 1 o

Canon 14 MP CMOS Sensor
(14 bits per pixel)

Image credit: Canon (EOS M) Stanford (S348K, Fall 2018



The Sensor
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Photoelectric effect

Incident photons / /

(™ Ejected electrons

Albert Einstein

Einstein’s Nobel Prize in 1921 “for his services to Theoretical Physics,
and especially for his discovery of the law of the photoelectric effect”

Slide credit: Ren Ng Stanford (5348K, Fall 2018



CMOS sensor

“Optically black” region
(shielded from light)

Exposed region
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CMOS APS (active pixel sensor) pixel

—

- - \

—
-

Microlens —= '
3 ' Red
y Color
4 Filter
Reset

Amplifier Transistor

Transistor Row
Select
Column

Bus ’ Bus

Transistor
Photodiode
Silicon
Substrate
Potential
: Well
Figure 3

’ it: ' ://micro.magnet.fsu.edu/pri igitalimaging/cmosimagesensors.html)
lllustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html Stanford CS348K, Fall 2018



http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html

CMOS response functions are linear

Photoelectric effect in silicon:

- Response function from
photons to electrons is linear

w
-
-

(Some nonlinearity close to 0
due to noise and when close
to pixel saturation)

\
-
-

Response (1073 Electrons)
o
-

O 20 40 60 80 100

[llumination level (arbitrary)

(Epperson, P.M. et al. Electro-optical characterization
of the Tektronix TK5 ..., Opt Eng., 25, 1987)

Slide credit: Ren Ng Stanford CS348K, Fall 2018



Quantum efficiency

m Not all photons will produce an electron
- Depends on quantum efficiency of the device

OF - # electrons
# photons
- Human vision: ~15%

- Typical digital camera: < 50%

- Best back-thinned CCD: > 90%
(e.q., telescope)

Slide credit: Ren Ng Stanford CS348K, Fall 2018



Sensing Color
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Electromagnetic spectrum

Describes distribution of power (energy/time) by wavelength

Below: spectrum of various common light sources:

Daylight Incandescent Fluorescent
00 0 1O =
30 a0 30 h
i i '
c 40 = 4+
} 'O0
wavelengin (nn wave -.-.";”"' alad)
Halogen Cool White LED Warm White LED
0O - )

Figure credit:

aadmesy
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Example: warm white vs. cool white

Image credit: (0z Lighting: https://www.ozlighting.com.au/blog/what-is-warm-white-versus-cool-white/)
Stanford (S348K, Fall 2018



Simple model of a light detector

many — incoming spectrum
hotons incident . 9%
»)
photons (I)()\)
per unit
wavelength
| |
1007 spectral response function
detection P P )\
efficiency 7“( )
(percent)
0_
many —
detected 4
photon.s area = signal
per unit
> signal wavelength (overall response)
400 700

Wavelength (nanometers)

R= [ ®\)r(\)d

Figure credit: Steve Marschner Stanford (S348K, Fall 2018



Spectral response of cone cells in human eye

Three types of cells in eye responsible for color perception: S, M, and L cones
(corresponding to peak response at short, medium, and long wavelengths)

Implication: the space of human-perceivable colors is three dimensional

Response functions for S, M, and L cones
S-Cone M-Cone L-Cone

0. ™=

400 430 460 490 520 550 580 610 640 670 700

wavelength (nm)
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Human eye cone cell mosaic

False colorimage:
red =L cones
green =M cones
blue =R cones

Image Credit: Ramkumar Sabesan Lab Stanford CS348K, Fall 2018



Color filter array (Bayer mosaic)

m Color filter array placed over sensor

B Result: different pixels have different spectral response (each pixel
measures red, green, or blue light)

m 50% of pixels are green pixels Pixel response curve: Canon 40D/50D

: Canon 50D

— —=— : Canon 40D :

0.4

0.35

o
L)

0.25

0.2

Pixel Quantum Efficiency

-
—_—
()

Traditional Bayer mosaic
(other filter patterns exist: e.g., Sony’s RGBE) ¥iawslangth ()

f(A)

: : :
4000 6000 6500 7000

Image credit:
Wikipedia, Christian Buil (http://www.astrosurf.com/~buil/cameras.htm) Stanford (5348K, Fall 2018



RAW sensor output (simulated data)

Light hitting sensor

“Hot pixel”
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CMOS Pixel Structure
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Front-side-illuminated (FSI) CMOS

Building up the C(M0OS imager layers

Courtesy R. Motta, Pixim Stanford (5348K, Fall 2018



Pixel pitch:
A few microns
Photodiodes ’
~50% Fill Factor \‘

<&

%

\ 4

Courtesy R. Motta, Pixim Stanford (S348K, Fall 2018



Polysilicon
&Via1

Courtesy R. Motta, Pixim Stanford (S348K, Fall 2018



Metal 1

Courtesy R. Motta, Pixim Stanford (S348K, Fall 2018



Metal 2

Courtesy R. Motta, Pixim Stanford (S348K, Fall 2018



Courtesy R. Motta, Pixim Stanford (S348K, Fall 2018



Metal 4

Courtesy R. Motta, Pixim Stanford (S348K, Fall 2018



Color filter array

Courtesy R. Motta, Pixim Stanford (S348K, Fall 2018



Pixel fill factor

Fraction of pixel area that integrates incoming light

LLLLLLLL
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Photodiode area I Non photosensitive (circuitry)

Slide credit: Ren Ng Stanford CS348K, Fall 2018



CMOS sensor pixel

Color filter attenuates light

Microlens Red Microlens (a.k.a. lenslet) steers light

g toward photo-sensitive region

' p— Reset (increases light-gathering capability)
Amplifier Pl A Transistor
. — msmlmt
) - L4 ] elec
CoBI::;nn [ /A / Bus
Transistor /
/ Photodiode
Silicon
Substrate
Potential
. Well
Figure 3

Advanced question: Microlens also
serves to reduce aliasing signal. Why?

lllustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html)
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Using micro lenses to improve fill factor

MICRO-LENS LAYOUT

Leica M9

1 Pl diagram
2 Centerad micro lens n the middle of the sonsor

3 Laterally displaced micro lens at the adge of the senscre

Shifted microlenses on M9 sensor.

Slide credit: Ren Ng Stanford CS348K, Fall 2018



Optical cross-talk

Sensor architecture

of a standard
CMOS sensor

(schematic diagram) —_‘-—"—
1 Microlens design o

with normal radms ‘ \
2 Relatively large

distance between

color filter and

photodiode

With some CMOS sensors, rays of incoming kight at large angles of incidence can fail to reach the photodiode of the
corresponding pxel and reach only the adsacent pixel. Or they are shadowed of reflected on the way 10 the pixel with the
effect that the overall amount of Eght received by the pixels is less than the amount arriving through the microlenses.

Slide credit: Ren Ng
http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html Stanford CS348K, Fall 2018



Pixel optics for minimizing cross-talk

Sensor architecture

of the Leica

Max 24 MP sensor

(schematic diagram)

1 Microlens design ‘

withvaryingradies | [ AN AV

2 Relatively shot | — : : T '
N\ —
color filter and ' 2
e

Inthe case of the Leica Max 24 MP sonsor, and in contrast to standard CMOS sonsors, even light rays with Lage angles
of incidence, e.g. fromwide-angle lenses or lange apertures, are caplured precisely by the photodiodes of the sensor. This
15 enabled by the special microlens design and the smalier dstance between the colour filter and photodode, which allows
more light to enter the system, and ensures that it falils more directly on the respective photodiodes.

Slide credit: Ren Ng

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html Stanford CS348K, Fall 2018



Backside illumination sensor

B Traditional C(MOS: electronics block light

B |dea: move electronics underneath light gathering region
- Increases fill factor
- Reduces cross-talk due since photodiode closer to microns
- Implication 1: better light sensitivity at fixed sensor size
- Implication 2: equal light sensitivity at smaller sensor size (shrink sensor)

Incidental light Incidental light
e an'amy
- — - - ack side
Color ﬂl —I-._'- ................................
etalviing )0 DOC 1 1 prees
Light recei\"ing r - . . . Y o | A A A Y | S A T S | O e e e T
surface ] | L] o] rront sidgss T3 e
- N N ' | Metal wiring
Substrate [Tt bl b j0 000 BEE Ol
SaRRannas M commaian Y] s Py ¢ PN .
Front-illuminated structure Back-illuminated structure

lllustration credit: Sony Stanford CS348K, Fall 2018



Pixel saturation and noise
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Photon count for pixels has

Satu ratEd piXEIS saturated (no detail in image)

Stanford (S348K, Fall 2018
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Graph credit: clarkvision.com Stanford (348K, Fall 2018



Bigger sensors = bigger pixels (or more pixels?)

Crop
o o o Fact :
B jPhone X (1.2 micron pixels, 12 MP) N Medium format (Kodak KAF 39000 sensor)
® My Nikon D7000 (APS-C)
(4.8 micron pixels, 16 MP)
B Nikon D4 (full frame sensor) o 35 mm "full frame" 36x24mm
(7.3 micron pixels, 16 MP) T
o g8 . . 1.29 | - 24x16mm
B [mplication: very high pixel count sensors . iz L
. . 1.62 - entax, sony)
can be built with current CMOS technology :: [ APS-C (Canon)
e p o . -« Foveon (Sigma)
- Full frame sensor with iPhone X pixel .+ I ' Four Thirds System
size ~ 600 MP sensor 133 o 7 (Nikom)
«1—1/2.3" | I |

| o

Nokia Lumia
(41 MP)

Image credit: Wikipedia Stanford CS348K, Fall 2018



Measurement noise

We've all been frustrated by noise in low-
light photographs

(or in shadows in daytime images)

Stanford (S348K, Fall 2018



Measurement noise

~

Grand Teton National Park Stanford C5348K, Fall 2018



Measurement noise

e e R

Grand Teton National Park Stanford CS348K, Fall 2018




Sources of measurement noise

® Photon shot noise:
- Photon arrival rate takes on Poisson distribution
- Standard deviation =sqrt(N) (N =number of photon arrivals)
- Signal-to-noise ratio (SNR): N/sqrt(N)

- Implication: brighter the signal, the higher the SNR

B Dark-shot noise €«————————————  Addressed by: subtract dark image

- Due to leakage current in sensor

- Electrons dislodged due to thermal activity (increases exponentially with
sensor temperature)

B Non-uniformity of pixel sensitivity (due to manufacturing defects)

. :
Read noise \ Addressed by: subtract flat field image

- e.g., due to amplification / ADC (e.g., image of gray wall),

Stanford (S348K, Fall 2018



Dark shot noise / read noise
Black image examples: Nikon D7000, High IS0

1 sec exposure

Stanford (S348K, Fall 2018



Read noise

35 i
I Digital Cameras:
30 Sensor Read Noise
= (electrons)
c
© 25
..3 ¢ Camera CMOS
L= Camera CCD
% 20 ¢ Sensor CMOS g =iitn
v Sensor CCD
>
= 15
©
o
10 @ 20?67’ 7Z W ‘Canon 10D
i Nikon D300
5 = 0‘ Cangn 350D N ® ®Nikon D3 _
o Canon 72 fanon 40D canor®oD Canon 1D gaa':l()o[;\;é) Mark
Canon & Canon 5D Marklll
0 i 2 1 2 1 2 1 2 1 50D , Ganon, Markll , 1 1
1D IV
0 1 2 3 4 ) 6 7 8 g

Pixel Pitch (microns)

Read noise is largely independent of pixel size
Large pixels + bright scene = large N
S0, noise determined largely by photon shot noise

Image credit: clarkvision.com
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Maximize light gathering capability

m Goal: increase signal-to-noise ratio

- Dynamicrange of a pixel (ratio of brightest light measurable to dimmest light
measurable) is determined by the noise floor (minimum signal) and the pixel’s
full-well capacity (maximum signal)

m Big pixels
- Nikon D4: 7.3 um

= iPhoneX: 1.2 um

m Sensitive pixels

- Good materials
- High fill factor

Stanford (S348K, Fall 2018



Artifacts arising from lenses

Stanford (S348K, Fall 2018



Vignetting

Image of white wall (Note: | contrast-enhanced the image to show effect)

Stanford (S348K, Fall 2018



Types of vignetting

Optical vignetting: less light reaches edges of sensor due to physical obstruction in lens

Pixel vignetting: light reaching pixel at an oblique

angle is less likely to hit photosensitive region than wrolens —dl i

light incident from straight above (e.qg., obscured by i

electronics) Cf’fﬂ.\:;-\'?é:d;ra/is;.w
— Microlens reduces pixel vignetting T:\f ot /Af

Substrate

Potential
Well

Figure 3

Image credit: Mark Butterworth Stanford CS348K, Fall 2018



Chromatic aberration (due to lens)

~ Chromatic aberration

Image credit: Wikipedia Stanford (5348K, Fall 2018



More challenges

B Chromatic shifts over sensor

- Pixel light sensitivity changes over sensor due to interaction with microlens

(Index of refraction depends on wavelength, so some wavelengths are more likely
to suffer from cross-talk or reflection. Ug!)

B Lens distortion

xS
- &

| |

Pincushion distortion

Captured Image Corrected Image

Image credit: PCWorld Stanford (5348K, Fall 2018



Part 2:

A simple RAW image processing pipeline
(how software takes sensor output to a high-quality RGB image)

Stanford (S348K, Fall 2018



Optical clamp: remove sensor offset bias

output_pixel = input_pixel - [average of pixels from optically black region]

CCDC_CLAMP [30:28] OBSLEN

CCDC_CLAMP [24:10] OBST .
I Remove bias due to sensor black level

CCDC_CLAMP [27:25] OBSLN . .
(from nearby sensor pixels at time of shot)

‘x CCDC_CLAMP [4:0] OBGAIN
Computed offset used here

Masked pixels

Active pixels

Stanford (S348K, Fall 2018



Correct for defective pixels

m Store LUT with known defective pixels
- e.g., determined on manufacturing line, during sensor calibration and test

m Example correction methods

- Replace defective pixel with neighbor
- Replace defective pixel with average of neighbors

- Correct defect by subtracting known bias for the defect

output_pixel = (isdefectpixel(current_pixel _xy)) ?
average(previous_input_pixel, next_input_pixel) :
input_pixel;

m Will describe solutions based only analyzing pixel values (later)

Stanford (S348K, Fall 2018



Lens shading compensation

m (orrect for vignetting

- Good implementations will consider wavelength-dependent vignetting (that
creates chromatic shift over the image)

m Possible implementations:

- Use flat-field photo stored in memory

- e.g., lower resolution buffer, upsampled on-the-fly
- Use analytic function to model correction

gain = upsample_compensation_gain_buffer(current_pixel xy);
output pixel = gain x 1nput_pixel;

Stanford (S348K, Fall 2018



White balance

B Adjust relative intensity of rgh values (so neutral tones appear neutral)

output_pixel = white_balance_coeff *x input_pixel
// note: in this example, white balance coeff 1s vec3
// (adjusts ratio of red-blue-green channels)

B The same “white” object will generate different sensor response when illuminated
by different spectra. Camera needs to infer what the lighting in the scene was.

.\\& n\w . ~".<‘*‘%
4 ) , b |
. A

Custom (unset) Fiash Tungsten

o

My Manipuilation

Image credit: basedigitalphotography.com Stanford CS348K, Fall 2018



White balance example et

»
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White balane example ]
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White balance example -




White balance algorithms

m White balance coefficients depend on analysis of image contents

- (alibration based: get value of pixel of “white” object: (rw, gw, bw)
- Scale all pixels by (1/rw, 1/gw, 1/by)

- Heuristic based: camera must guesse which pixels correspond to white objects in scene
- Gray world assumption: make average of all pixels in image gray

- Brightest pixel assumption: find brightest region of image, make it white ([1,1,1])
Scaler,g,b values so

these pixels are (1,1,1)

® Modern white-balance algorithms are
based on learning correct scaling from
examples

- (Create database of images for which good
white balance settings are known (e.g.,
manually set by human)

= Learning mapping from image features to
white balance settings

= When new photo is taken, use learned model
to predict good white balance settings

Stanford (S348K, Fall 2018



Demosiac

B Produce RGB image from mosaiced input image
m Basic algorithm: bilinear interpolation of mosaiced values (need 4 neighbors)
B More advanced algorithms:

- Bicubicinterpolation (wider filter support region... may overblur)

- Good implementations attempt to find and preserve edges in photo

Image credit: Mark Levoy Stanford CS348K, Fall 2018



Demosaicing errors

® Common difficult case: fine diagonal black and white stripes
B Result: moire pattern color artifacts

RAW data
from sensor

RGB result after
demosaic

Image credit: http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html Stanford CS348K, Fall 2018


http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html

Demosaicing errors

What will
demosaiced
result look like is
this signal was
captured by
sensor?

Stanford (S348K, Fall 2018



Demosaicing errors

(Visualization of
signal and Bayer
pattern)

Stanford (S348K, Fall 2018



Demosaicing errors

No red measured.

Interpolation of green
yields dark/light
pattern.

Stanford (S348K, Fall 2018



Why color fringing?
What will
. . . - - demosaiced

H R >

result look like is
this signal was

. . o captured by
sensor?
_

Stanford (S348K, Fall 2018



Why color fringing?
N e
1 B
u v
_

(Visualization of
signal and Bayer
pattern)

Stanford (S348K, Fall 2018



Y'CbCr color space

Recall: colors are represented as point in 3-space
RGB is just one possible basis for representing color
Y'ChCr separates luminance from hue in representation

Y’ = luma: perceived luminance
Cb = blue-yellow deviation from gray
Cr =red-cyan deviation from gray

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

“Gamma corrected” RGB
(primed notation indicates
perceptual (non-linear) space)

We'll describe what this means
/ this later in the lecture.
Conversion matrix from R'G'B’ to Y'Ch(Cr:
65.738- R,  129.057-G',  25.064- B,

AT
%6 %6 256
_37.945- R’ 74.494- G, 112.439. B!
Cp= 128+ 6 w5 T 6
112.439 - R’ 04.154 - G 18.285 - B!
Cr= 128 D _ D _ D
R g 256 256 256

Image credit: Wikipedia Stanford (S348K, Fall 2018



Better demosaic

m (Convert demosaiced RGB value to YChCr
m Low-pass filter (blur) or median filter ChCr channels
B Combine filtered ChCr with full resolution Y from sensor to get RGB

m Trades off spatial resolution of hue to avoid objectionable color fringing

Stanford (S348K, Fall 2018



Denoising

Denoised

Stanford (S348K, Fall 2018



Denoising via downsampling
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Downsample via averaging
(bilinear resampling)

f" S& Downsample via

point sampling

rou

(noise remains) Noise reduced
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Before talking about denoising...

Aside: image processing basics

Stanford (S348K, Fall 2018



Example image processing operations

Increase contrast

Stanford (S348K, Fall 2018



Increasing contrast with “S curve”

m Per-pixel operation
B output(x,y) = f(input(x,y))

Output pixel intensity

Input pixel intensity

Stanford (S348K, Fall 2018



Example image processing operations

Stanford (S348K, Fall 2018



Example image processing operations
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Edge detection

Stanford (S348K, Fall 2018



A “smarter” blur (doesn’t blur over edges)

Stanford (S348K, Fall 2018



Review: convolution

O

et i

output signal filter input signal

It may be helpful to consider the effect of convolution with the simple unit-area “box” function:

f(:z:) — {1 ‘Zl’}‘ = 0:5 ......... t 1

0 otherwise

0.9 4_““4 »
(f g g)(x) — / g(:E — y)dy 0.5 0.5

/ —0.5

[ * gisa”blurred” version of g

Stanford (S348K, Fall 2018



Discrete 2D convolution

T Tj—

output image filter input image

Consider f (i, 9 ) thatis nonzero onlywhen: —1 < 72,7 < 1
Then:

(fxg)(@y)= > [, 5)I(x—iy—j)

iaj =—1
And we can represent f(i,j) as a 3x3 matrix of values where:

f(i,7) =F; ; (often called: “filter weights’, “filter kernel”)

Stanford (S348K, Fall 2018



Simple 3x3 box blur in code

float input[(WIDTH+2) *x (HEIGHT+2)];
float output[WIDTH *x HEIGHT]; <———————— Fornow:ignore boundary pixelsand

assume output image is smaller than

float weights[] = {1./9, 1./9, 1./9, input (makes convolution loop bounds
1./9, 1./9, 1./9, much simpler to write)

1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
for (int 11=0; 1i<3; 11i++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + 1] = tmp;

Stanford (S348K, Fall 2018



7x7 box blur

Original

Blurred

Stanford (S348K, Fall 2018



Gaussian blur

m (Obtain filter coefficients from sampling 2D Gaussian

1 i2 4 52

f(Z7]) — 27_‘_0_26 202

m Produces weighted sum of neighboring pixels (contribution
falls off with distance)

— In practice: truncate filter beyond certain distance for efficiency

075 124 .075
124 204 124

075 124 .075

Stanford (S348K, Fall 2018



7x7 gaussian blur

Original

:

Blurred

Stanford (S348K, Fall 2018



What does convolution with this filter do?

0 —1 0
-1 o5 -1
0 -1 0

Sharpens image!



3x3 sharpen filter

Original
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What does convolution with these filters do?

—1 0 1 -1 -2 -1
—2 0 2 0 0 U
—1 0 1 1 2 1
Extracts horizontal Extracts vertical

gradients gradients



Gradient detection filters

-
T I—— . (— . O — - — T S - | A - -

L . AR, D - - B e B P ——-— - &

o . et ct—T—— — T

- e - SR— — — | — — | — — — — - W c— —— — - -

e ——— e -~

— ——— — - | —— o m———— —— ——
-

Horizontal gradients

Vertical gradients

Note: you can think of a filteras a
“detector” of a pattern, and the
magnitude of a pixel in the output
image as the “response” of the filter
to the region surrounding each pixel
in the input image (this is a common
interpretation in computer vision)
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Sobel edge detection

m Compute gradient response images

—1 0 1
G, = |[—2 0 2| %1
-1 0 1
-1 -2 -1
Gy =10 0 0O | x1
1 2 1

m Find pixels with large gradients

G=1/G+G,>

YT Pixel-wise operation on images

Stanford (S348K, Fall 2018



Data-dependent filter (not a convolution)

float input[ (WIDTH+2) x (HEIGHT+2)];
float output[WIDTH x HEIGHT];

for (int j=0; j<HEIGHT; j++) {
for (int i=0; 1<WIDTH; i++) {
float min_value = min( min(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),

min(input[j*WIDTH + i-1], input[j*WIDTH + 1+l1]) );
float max_value = max( max(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),

max(input[j*WIDTH + 1-1]1, input[j*WIDTH + 1+1]) );

output[j*WIDTH + 1] = clamp(min_value, max_value, input[j*WIDTH + 1]);
}

This filter clamps pixels to the min/max of its cardinal neighbors
(e.g., hot-pixel suppression — no need for a lookup table)

Stanford (S348K, Fall 2018



Median filter

m  Replace pixel with median of its neighbors §

—  Useful noise reduction filter: unlike gaussian
blur, one bright pixel doesn’t drag up the
average for entire region

B Not linear, not separable

—  Filter weightsare1or0
(depending on image content)

1pX médian fi.Ifter

uint8 input[ (WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH % HEIGHTI;
for (int j=0; j<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
output[j*WIDTH + 1] =
// compute median of pixels

// 1n surrounding 5x5 pixel window _
} 3px median filter 10px median filter

}

m  Basicalgorithm for NxN support region:

— Sort N2 elements in support region, then pick median: O(N2log(N2)) work per pixel
— (Can you think of an 0(N2) algorithm? What about O(N)?
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5x5 median filter (N=>5)

m O(N2) work-per-pixel solution for 8-bit pixel data (radix sort 8 bit-integer data)

— Bin all pixels in support region, then scan histogram bins to find median

int WIDTH = 1024;

int HEIGHT = 1024;

uint8 input[ (WIDTH+2) x (HEIGHT+2)]1;
uint8 output[WIDTH *x HEIGHTI];

int histogram[256];

for (int j=0; jJ<HEIGHT; j++) {
for (int 1=0; i<WIDTH; i++) {

for (int 1i=0; ii<256; ii++)
histogram[i1i] = 0;
for (int jj=0; jj<5; jj++)
for (int 1ii=0; 1i<5; 1ii++)
histogram[input[(j+jj)*(WIDTH+2) + (i+ii)]]1++;

int count = 0;
for (int 11=0; 11<256; 1++) {
i1f (count + histogram[ii] >= 13)

output[j*WIDTH + i] = uint8(ii); See Weiss [SIGGRAPH 2006] for
, count += histogram[iil; 0(Ig N) work-per-pixel median filter
} (incrementally updates histogram)

}
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Bilateral filter

Example use of bilateral filter: removing noise while preserving image edges

Stanford (S348K, Fall 2018



Gaussian blur kernel Input image

Bilateral filter
N,

Zf Iz —i,y—j) — 1(z,y)])Go(i,j)I(x — i,y — )
Normalization /W f <

Re-weight based on difference

For all pixels in support region
pien TSP J in input image pixel values

of Gaussian kernel
WP — Zf(‘]($ o Zvy o ]) o I(ZIZ,y)DGG(Z,])I(QZ' o Zvy _])
B The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels
on the “other side” of strong edges. f(x) defines what “stronqg edge means”

B Spatial distance weight term f(x) could itself be a gaussian

= Orverysimple:f(x) =0 1if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a
truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity difference.
(non-linear filter: like the median filter, the filter’s weights depend on input image content)
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Bilateral filter

Pixels with significantly different intensity
as p contribute little to filtered result (they
are “on the “other side of the edge”

Input pixel p

Input image G(): gaussian about input pixelp  f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002 Stanford CS348K, Fall 2018



Bilateral filter: kernel depends on image content

S - output

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edge the bilateral filter will not respect
(it will blur across these edges)

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al. Stanford C5348K, Fall 2018



Denoising using non-local means

®  Main assumption: images have repeating texture

B Main idea: replace pixel with average value of nearby pixels that
have a similar surrounding region

NL[Z](p) = ) w(p,q)I(a) -

qeSs
H N
1 —lINp—Ngll”
w(p, q) — C—e h2 H
p

- Ny and N, are vectors of pixel values in square window around pixels p and g
(highlighted regions in figure)

- Difference between N, and P, =“similarity” of surrounding regions (here: L2 distance)

- Cpis a normalization constant to ensure weights sum to one for pixel p.

- Sis the search region (given by dotted red line in figure)
Stanford C5348K, Fall 2018



Denoising using non-local means

m Large weight for input pixels that have similar neighborhood as p

= Intuition: “filtered result is the average of pixels like this one”
= In example below-right: g7 and g2 have high weight, ¢3 has low weight

(C)

In each image pair above:
- Image at left shows the pixel to denoise.
- Image at right shows weights of pixels in 21x21-
pixel kernel support window.

Buades et al. CVPR 2005
Stanford (S348K, Fall 2018



End of aside on image processing basics
(back to our simple camera pipeline)
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Low light conditions need long exposure...
blur due to camera shake

Image credit: https://www.colorexpertshd.com/blog/how-to-fix-blurry-photos-induced-by-camera-shake-in-photoshop
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Brightened image to see detail in dark _
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Attempt to denoise... splotchy effec .
remains
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Also still significant noise.
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ldea: merge sequence of captures
Algorithm used in Google Pixel Phones [Hasinoff 16]

m  Long exposure: reduces noise (acquires more light), but introduces blur
(camera shake or scene movement)

m  Short exposure: sharper image, but lower signal/noise ratio

B |dea: take sequence of shorter exposures, but align images in software,
then merge them into a single sharp image with high signal to noise ratio

after
shutter
press

full-resolution

burst of raw frames .
align & merge

Stanford (S348K, Fall 2018



Align and merge algorithm

B For each image in burst, align to reference frame
Image pair (use sharpest photo as reference frame)

Reference ——— - Compute optical flow field aligning image pair
RS B Simple merge algorithm: warp images according
to flow, and sum

B More sophisticated techniques only merge pixels
where confidence in alignment is (use noisy
reference pixels when alignment fails)

Visualization of flow

[Image credit: Hasinoff 16] Stanford (S348K, Fall 2018



[Hasinoff 16]

Results of align and merge

Details of alignment and merging algorithm in tonight’s reading (and assignment 1)

L ; ==y

Full image

~
<
S E
S -
<
L0
~
S
=
>
%}
N\
Q
Q
~
%)

Alignment failure

(a) Reference frame (b) Temporal mean (¢) Temporal mean with alignment (d) Robust merge with alignment

[Image credit: Hasinoff 16]
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Gamma correction
(global tone adjustment)
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Lightness (perceived brightness) aka luma

? O
Lightness (L*) <—— Luminance(Y) = % /\j\

(Perceived by brain) (Response of eye) e’ ]
Spectral sensitivity of eye Radiance
A (eye’s response curve) (energy spectrum
from scene)

Dark adapted eye: L* x Y 04
Bright adapted eye: L#* o Y05

In a dark room, you turn on a light with luminance: Y;
You turn on a second light that is identical to the first. Total output is now: Y, = 2Y;

Total output appears 2”4 = 1.319 times brighter to dark-adapted human

Note: Lightness (L*) is often referred to as luma (Y’)
Stanford C5348K, Fall 2018



Consider an image with pixel values encoding
luminance (linear in energy hitting sensor)

| % = Y45

Consider 12-bit sensor pixel:
Can represent 4096 unique luminance values
in output image

Values are ~ linear in luminance since they
represent the sensor’s response

A
1
/
/
0.75F
x, -
a
(7]
(<))
= rd
— /
o
S 7
=2 05T
=
w 3
=
T —F
]
S 1 /
=
K
0.25f /
1»'l
|
+ ? i —
0| 0.25 0.5 0.75

Luminance (Y)
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Problem: quantization error

Many common image formats store 8 bits per channel (256 unique values)
Insufficient precision to represent brightness in darker regions of image

A

/

0.751

Perceived brightness: L*

n.2sf /

- . .

| % = Y45

Bright regions of image: perceived difference between
pixels that differ by one step in luminance is small!
(human may not even be able to perceive difference
between pixels that differ by one step in luminance!)

Dark regions of image: perceived difference between
pixels that differ by one step in luminance is large!
(quantization error: gradients in luminance will not
appear smooth.)

- o
13 - -

.......
-----

Luminance (Y)

o
1 -

Rule of thumb: human eye cannot differentiate <1% differences in luminance
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Store lightness in 8-bit value, not luminance

|dea: distribute representable pixel values evenly with respect to perceived brightness,
not evenly in luminance (make more efficient use of available bits)

1 I

x 0.75r
e
a
7
£
£ /
(=2
.= /
=2 057 /
&
w +
= —
T .
h /
)
Q.
0.25f /
F
}
R . . $ . . . . $ . . . * $ . . . . $
0| 0.25 0.5 0.75 1

Luminance (Y)

Solution: pixel stores Y045
Must compute (pixel_value)22 prior to display on LCD

Warning: must take caution with subsequent
pixel processing operations once pixels are
encoded in a space that is not linear in
luminance.

e.g., When adding images should you add pixel

values that are encoded as lightness or as
luminance?
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Local-tone adjustment

Weights

Improve picture’s aesthetics by locally
adjusting contrast, boosting dark
regions, decreasing bright regions

(more details in the next lecture)

Combined image
(unique weights per pixel) . 5
Image credit: Mertens 2007 Stanford (S348K, Fall 2018



Summary: simplified image processing pipeline

m (Correct pixel defects
® Align and merge

m Correct for sensor bias (using measurements of optically black pixels)

m Vignetting compensation (10-12 bits per pixel)
. 1 intensity value per pixel
® White balance Pixel values linear in energy
u .
Demosaic 3x12 bits per pixel
B Denoise RGB intensity per pixel

: : . Pixel values linear in energy
B Gamma Correction (non-linear mapping)

® Local tone mapping 3x8-bits per pixel

m Final adjustments sharpen, fix chromatic aberrations, Pixel values perceptually linear

hue adjust, etc.
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