
Visual Computing Systems
Stanford CS348K, Fall 2018

Lecture 2:

The Camera Image
Processing Pipeline

Acknowledgement to Ren Ng (Berkeley), Marc Levoy (Stanford/Google) for various slides used in this lecture.

 Stanford CS348K, Fall 2018

The next two lectures…
The pixels you see on screen are quite different than the

values recorded by the sensor in a modern digital camera.

Computation is now a fundamental aspect of producing
high-quality pictures.

Computation
Sensor output

(“RAW”)

Beautiful image that
impresses your friends

on Instagram

 Stanford CS348K, Fall 2018

Part 1: image sensing hardware
(how a digital camera measures light, and how physical

limitations of these devices place challenges on software)

 Stanford CS348K, Fall 2018

Camera cross section

Image credit: Canon (EOS M)

Sensor

Canon 14 MP CMOS Sensor
(14 bits per pixel)

 Stanford CS348K, Fall 2018

The Sensor

 Stanford CS348K, Fall 2018

Photoelectric effect

Incident photons

Ejected electrons

Einstein’s Nobel Prize in 1921 “for his services to Theoretical Physics,
and especially for his discovery of the law of the photoelectric effect"

Albert Einstein

Slide credit: Ren Ng

 Stanford CS348K, Fall 2018

CMOS sensor

Row select
Register

ADCAmplify
Bits

Row buffer
(shift register)

…

Active pixel sensor
(2D array of photo-diodes)

“Optically black” region
(shielded from light)

Exposed region
Photodiode

(a pixel)

 Stanford CS348K, Fall 2018

CMOS APS (active pixel sensor) pixel

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html)

http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html

 Stanford CS348K, Fall 2018

CMOS response functions are linear
Photoelectric effect in silicon:

- Response function from
photons to electrons is linear

(Some nonlinearity close to 0
due to noise and when close
to pixel saturation)

Slide credit: Ren Ng

 Stanford CS348K, Fall 2018

Quantum efficiency
▪ Not all photons will produce an electron

- Depends on quantum efficiency of the device

- Human vision: ~15%

- Typical digital camera: < 50%

- Best back-thinned CCD: > 90% 
(e.g., telescope)

QE =
electrons
photons

Slide credit: Ren Ng

 Stanford CS348K, Fall 2018

Sensing Color

 Stanford CS348K, Fall 2018

Electromagnetic spectrum
Describes distribution of power (energy/time) by wavelength

Figure credit:

Below: spectrum of various common light sources:

 Stanford CS348K, Fall 2018

Example: warm white vs. cool white

Image credit: (Oz Lighting: https://www.ozlighting.com.au/blog/what-is-warm-white-versus-cool-white/)

 Stanford CS348K, Fall 2018

Simple model of a light detector

Figure credit: Steve Marschner

R =

Z

�
�(�)r(�)d�

�(�)

r(�)
spectral response function

(overall response)

incoming spectrum

 Stanford CS348K, Fall 2018

Spectral response of cone cells in human eye
Three types of cells in eye responsible for color perception: S, M, and L cones
(corresponding to peak response at short, medium, and long wavelengths)

Implication: the space of human-perceivable colors is three dimensional

S =

Z

�
�(�)S(�)d�

M =

Z

�
�(�)M(�)d�

L =

Z

�
�(�)L(�)d�

wavelength (nm)

No
rm

al
ize

d
re

sp
on

se

Response functions for S, M, and L cones

 Stanford CS348K, Fall 2018

Human eye cone cell mosaic

False color image:
red = L cones
green = M cones
blue = R cones

Image Credit: Ramkumar Sabesan Lab

 Stanford CS348K, Fall 2018

Color filter array (Bayer mosaic)
▪ Color filter array placed over sensor

▪ Result: different pixels have different spectral response (each pixel
measures red, green, or blue light)

▪ 50% of pixels are green pixels

Traditional Bayer mosaic
(other filter patterns exist: e.g., Sony’s RGBE)

Pixel response curve: Canon 40D/50D

Image credit:
Wikipedia, Christian Buil (http://www.astrosurf.com/~buil/cameras.htm)

f(�)

 Stanford CS348K, Fall 2018

RAW sensor output (simulated data)

RAW output of sensor

Light hitting sensor

Bad row

“Hot pixel”

 Stanford CS348K, Fall 2018

CMOS Pixel Structure

 Stanford CS348K, Fall 2018

Front-side-illuminated (FSI) CMOS
Building up the CMOS imager layers

Courtesy R. Motta, Pixim

 Stanford CS348K, Fall 2018

Pixel pitch:
A few microns

Photodiodes
~50% Fill Factor

Courtesy R. Motta, Pixim

 Stanford CS348K, Fall 2018

Polysilicon
& Via 1

Courtesy R. Motta, Pixim

 Stanford CS348K, Fall 2018

Metal 1

Courtesy R. Motta, Pixim

 Stanford CS348K, Fall 2018

Metal 2

Courtesy R. Motta, Pixim

 Stanford CS348K, Fall 2018

Metal 3

Courtesy R. Motta, Pixim

 Stanford CS348K, Fall 2018

Metal 4

Courtesy R. Motta, Pixim

 Stanford CS348K, Fall 2018

Color filter array

Courtesy R. Motta, Pixim

 Stanford CS348K, Fall 2018

Pixel fill factor

Photodiode area Non photosensitive (circuitry)

Fraction of pixel area that integrates incoming light

Slide credit: Ren Ng

 Stanford CS348K, Fall 2018

CMOS sensor pixel

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html)

Microlens (a.k.a. lenslet) steers light
toward photo-sensitive region
(increases light-gathering capability)

Advanced question: Microlens also
serves to reduce aliasing signal. Why?

Color filter attenuates light

http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html

 Stanford CS348K, Fall 2018

Using micro lenses to improve fill factor

Leica M9

Shifted microlenses on M9 sensor.

Slide credit: Ren Ng

 Stanford CS348K, Fall 2018

Optical cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html
Slide credit: Ren Ng

 Stanford CS348K, Fall 2018

Pixel optics for minimizing cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html
Slide credit: Ren Ng

 Stanford CS348K, Fall 2018

Backside illumination sensor
▪ Traditional CMOS: electronics block light

▪ Idea: move electronics underneath light gathering region
- Increases fill factor
- Reduces cross-talk due since photodiode closer to microns
- Implication 1: better light sensitivity at fixed sensor size
- Implication 2: equal light sensitivity at smaller sensor size (shrink sensor)

Illustration credit: Sony

 Stanford CS348K, Fall 2018

Pixel saturation and noise

 Stanford CS348K, Fall 2018

Saturated pixels Photon count for pixels has
saturated (no detail in image)

 Stanford CS348K, Fall 2018

Full-well capacity

Graph credit: clarkvision.com

Pixel saturates when photon capacity is exceeded

Saturated pixels

 Stanford CS348K, Fall 2018

Bigger sensors = bigger pixels (or more pixels?)
▪ iPhone X (1.2 micron pixels, 12 MP)

▪ My Nikon D7000 (APS-C)
(4.8 micron pixels, 16 MP)

▪ Nikon D4 (full frame sensor)
(7.3 micron pixels, 16 MP)

▪ Implication: very high pixel count sensors
can be built with current CMOS technology
- Full frame sensor with iPhone X pixel

size ~ 600 MP sensor

24x16mm

Nokia Lumia
(41 MP)

36x24mm

Image credit: Wikipedia

 Stanford CS348K, Fall 2018

Measurement noise

We’ve all been frustrated by noise in low-
light photographs

(or in shadows in daytime images)

 Stanford CS348K, Fall 2018

Measurement noise

Grand Teton National Park

 Stanford CS348K, Fall 2018

Measurement noise

Grand Teton National Park

 Stanford CS348K, Fall 2018

Sources of measurement noise
▪ Photon shot noise:

- Photon arrival rate takes on Poisson distribution
- Standard deviation = sqrt(N) (N = number of photon arrivals)
- Signal-to-noise ratio (SNR): N/sqrt(N)

- Implication: brighter the signal, the higher the SNR

▪ Dark-shot noise
- Due to leakage current in sensor
- Electrons dislodged due to thermal activity (increases exponentially with

sensor temperature)

▪ Non-uniformity of pixel sensitivity (due to manufacturing defects)

▪ Read noise
- e.g., due to amplification / ADC

Addressed by: subtract dark image

Addressed by: subtract flat field image
(e.g., image of gray wall),

 Stanford CS348K, Fall 2018

Dark shot noise / read noise
Black image examples: Nikon D7000, High ISO

1 sec exposure

 Stanford CS348K, Fall 2018

Read noise

Image credit: clarkvision.com

Read noise is largely independent of pixel size
Large pixels + bright scene = large N
So, noise determined largely by photon shot noise

 Stanford CS348K, Fall 2018

Maximize light gathering capability
▪ Goal: increase signal-to-noise ratio

- Dynamic range of a pixel (ratio of brightest light measurable to dimmest light
measurable) is determined by the noise floor (minimum signal) and the pixel’s
full-well capacity (maximum signal)

▪ Big pixels
- Nikon D4: 7.3 um

- iPhone X: 1.2 um

▪ Sensitive pixels
- Good materials

- High fill factor

 Stanford CS348K, Fall 2018

Artifacts arising from lenses

 Stanford CS348K, Fall 2018

Vignetting
Image of white wall (Note: I contrast-enhanced the image to show effect)

 Stanford CS348K, Fall 2018

Types of vignetting

Image credit: Mark Butterworth

Optical vignetting: less light reaches edges of sensor due to physical obstruction in lens

Pixel vignetting: light reaching pixel at an oblique
angle is less likely to hit photosensitive region than
light incident from straight above (e.g., obscured by
electronics)

- Microlens reduces pixel vignetting

 Stanford CS348K, Fall 2018

Chromatic aberration (due to lens)

Image credit: Wikipedia

 Stanford CS348K, Fall 2018

More challenges
▪ Chromatic shifts over sensor

- Pixel light sensitivity changes over sensor due to interaction with microlens
(Index of refraction depends on wavelength, so some wavelengths are more likely
to suffer from cross-talk or reflection. Ug!)

▪ Lens distortion

Pincushion distortion

Captured Image Corrected Image

Image credit: PCWorld

 Stanford CS348K, Fall 2018

Part 2:
A simple RAW image processing pipeline

(how software takes sensor output to a high-quality RGB image)

 Stanford CS348K, Fall 2018

Optical clamp: remove sensor offset bias
output_pixel = input_pixel - [average of pixels from optically black region]

Remove bias due to sensor black level
(from nearby sensor pixels at time of shot)

 Stanford CS348K, Fall 2018

Correct for defective pixels
▪ Store LUT with known defective pixels

- e.g., determined on manufacturing line, during sensor calibration and test

▪ Example correction methods
- Replace defective pixel with neighbor

- Replace defective pixel with average of neighbors

- Correct defect by subtracting known bias for the defect

output_pixel = (isdefectpixel(current_pixel_xy)) ?
 average(previous_input_pixel, next_input_pixel) :
 input_pixel;

▪ Will describe solutions based only analyzing pixel values (later)

 Stanford CS348K, Fall 2018

Lens shading compensation
▪ Correct for vignetting

- Good implementations will consider wavelength-dependent vignetting (that
creates chromatic shift over the image)

▪ Possible implementations:
- Use flat-field photo stored in memory

- e.g., lower resolution buffer, upsampled on-the-fly
- Use analytic function to model correction

gain = upsample_compensation_gain_buffer(current_pixel_xy);
output_pixel = gain * input_pixel;

 Stanford CS348K, Fall 2018

White balance
▪ Adjust relative intensity of rgb values (so neutral tones appear neutral)

▪ The same “white” object will generate different sensor response when illuminated
by different spectra. Camera needs to infer what the lighting in the scene was.

output_pixel = white_balance_coeff * input_pixel
// note: in this example, white_balance_coeff is vec3
// (adjusts ratio of red-blue-green channels)

Image credit: basedigitalphotography.com

 Stanford CS348K, Fall 2018

White balance example

 Stanford CS348K, Fall 2018

White balance example

 Stanford CS348K, Fall 2018

White balance example

 Stanford CS348K, Fall 2018

White balance algorithms
▪ White balance coefficients depend on analysis of image contents

- Calibration based: get value of pixel of “white” object: (rw, gw, bw)
- Scale all pixels by (1/rw, 1/gw, 1/bw)

- Heuristic based: camera must guesse which pixels correspond to white objects in scene
- Gray world assumption: make average of all pixels in image gray
- Brightest pixel assumption: find brightest region of image, make it white ([1,1,1])

▪ Modern white-balance algorithms are
based on learning correct scaling from
examples

- Create database of images for which good
white balance settings are known (e.g.,
manually set by human)

- Learning mapping from image features to
white balance settings

- When new photo is taken, use learned model
to predict good white balance settings

Scale r,g,b values so
these pixels are (1,1,1)

 Stanford CS348K, Fall 2018

Demosiac
▪ Produce RGB image from mosaiced input image

▪ Basic algorithm: bilinear interpolation of mosaiced values (need 4 neighbors)

▪ More advanced algorithms:

- Bicubic interpolation (wider filter support region… may overblur)

- Good implementations attempt to find and preserve edges in photo

Image credit: Mark Levoy

 Stanford CS348K, Fall 2018

Demosaicing errors
▪ Common difficult case: fine diagonal black and white stripes
▪ Result: moire pattern color artifacts

Image credit: http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html

RAW data
from sensor

RGB result after
demosaic

http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html

 Stanford CS348K, Fall 2018

Demosaicing errors

What will
demosaiced
result look like is
this signal was
captured by
sensor?

 Stanford CS348K, Fall 2018

Demosaicing errors

(Visualization of
signal and Bayer
pattern)

 Stanford CS348K, Fall 2018

Demosaicing errors

No red measured.

Interpolation of green
yields dark/light
pattern.

 Stanford CS348K, Fall 2018

Why color fringing?
What will
demosaiced
result look like is
this signal was
captured by
sensor?

 Stanford CS348K, Fall 2018

Why color fringing?

(Visualization of
signal and Bayer
pattern)

 Stanford CS348K, Fall 2018

Y’ = luma: perceived luminance
Cb = blue-yellow deviation from gray
Cr = red-cyan deviation from grayY’

Cb

Cr

Image credit: Wikipedia

Conversion matrix from R’G’B’ to Y’CbCr:

“Gamma corrected” RGB
(primed notation indicates
perceptual (non-linear) space)
We’ll describe what this means
this later in the lecture.

Y’CbCr color space
Recall: colors are represented as point in 3-space
RGB is just one possible basis for representing color
Y’CbCr separates luminance from hue in representation

 Stanford CS348K, Fall 2018

Better demosaic
▪ Convert demosaiced RGB value to YCbCr
▪ Low-pass filter (blur) or median filter CbCr channels
▪ Combine filtered CbCr with full resolution Y from sensor to get RGB

▪ Trades off spatial resolution of hue to avoid objectionable color fringing

 Stanford CS348K, Fall 2018

Denoising

Denoised

Original

 Stanford CS348K, Fall 2018

Denoising via downsampling

Downsample via
point sampling

(noise remains)

Downsample via averaging
(bilinear resampling)

Noise reduced

 Stanford CS348K, Fall 2018

Before talking about denoising…

Aside: image processing basics

 Stanford CS348K, Fall 2018

Example image processing operations

Increase contrast

 Stanford CS348K, Fall 2018

Increasing contrast with “S curve”
▪ Per-pixel operation

▪ output(x,y) = f(input(x,y))

Input pixel intensity
Ou

tp
ut

 p
ixe

l i
nt

en
sit

y

 Stanford CS348K, Fall 2018

Example image processing operations

Blur

 Stanford CS348K, Fall 2018

Example image processing operations

Sharpen

 Stanford CS348K, Fall 2018

Edge detection

 Stanford CS348K, Fall 2018

A “smarter” blur (doesn’t blur over edges)

 Stanford CS348K, Fall 2018

Review: convolution

output signal input signalfilter

It may be helpful to consider the effect of convolution with the simple unit-area “box” function:

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(y � x)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(y � x)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

f * g is a “blurred” version of g

-0.5 0.5

1

 Stanford CS348K, Fall 2018

Discrete 2D convolution

(f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j)

output image input imagefilter

Consider that is nonzero only when: (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:
(f ⇤ g)(x, y) =

1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called: “filter weights”, “filter kernel”)

 Stanford CS348K, Fall 2018

Simple 3x3 box blur in code
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

For now: ignore boundary pixels and
assume output image is smaller than
input (makes convolution loop bounds
much simpler to write)

 Stanford CS348K, Fall 2018

7x7 box blur
Original

Blurred

 Stanford CS348K, Fall 2018

Gaussian blur
▪ Obtain filter coefficients from sampling 2D Gaussian

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5

▪ Produces weighted sum of neighboring pixels (contribution
falls off with distance)

- In practice: truncate filter beyond certain distance for efficiency

 Stanford CS348K, Fall 2018

7x7 gaussian blur
Original

Blurred

 Stanford CS348K, Fall 2018

What does convolution with this filter do?

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5

Sharpens image!

 Stanford CS348K, Fall 2018

3x3 sharpen filter
Original

Sharpened

 Stanford CS348K, Fall 2018

What does convolution with these filters do?

Extracts horizontal
gradients

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

2

4
�1 �2 �1
0 0 0
1 2 1

3

5

Extracts vertical
gradients

 Stanford CS348K, Fall 2018

Gradient detection filters
Horizontal gradients

Vertical gradients

Note: you can think of a filter as a
“detector” of a pattern, and the
magnitude of a pixel in the output
image as the “response” of the filter
to the region surrounding each pixel
in the input image (this is a common
interpretation in computer vision)

 Stanford CS348K, Fall 2018

Sobel edge detection
▪ Compute gradient response images

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

▪ Find pixels with large gradients

G =
q

Gx
2 +Gy

2

Pixel-wise operation on images

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

G =
q

Gx
2 +Gy

2

 Stanford CS348K, Fall 2018

Data-dependent filter (not a convolution)
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float min_value = min(min(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),
 min(input[j*WIDTH + i-1], input[j*WIDTH + i+1]));
 float max_value = max(max(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),
 max(input[j*WIDTH + i-1], input[j*WIDTH + i+1]));
 output[j*WIDTH + i] = clamp(min_value, max_value, input[j*WIDTH + i]);
 }
}

This filter clamps pixels to the min/max of its cardinal neighbors
(e.g., hot-pixel suppression — no need for a lookup table)

 Stanford CS348K, Fall 2018

Median filter

uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 output[j*WIDTH + i] =
 // compute median of pixels
 // in surrounding 5x5 pixel window
 }
}

▪ Replace pixel with median of its neighbors
- Useful noise reduction filter: unlike gaussian

blur, one bright pixel doesn’t drag up the
average for entire region

▪ Not linear, not separable
- Filter weights are 1 or 0

(depending on image content)

▪ Basic algorithm for NxN support region:
- Sort N2 elements in support region, then pick median: O(N2log(N2)) work per pixel
- Can you think of an O(N2) algorithm? What about O(N)?

 Stanford CS348K, Fall 2018

5x5 median filter (N=5)

int WIDTH = 1024;
int HEIGHT = 1024;
uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
int histogram[256];

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 // construct histogram of support region
 for (int ii=0; ii<256; ii++)
 histogram[ii] = 0;
 for (int jj=0; jj<5; jj++)
 for (int ii=0; ii<5; ii++)
 histogram[input[(j+jj)*(WIDTH+2) + (i+ii)]]++;

 // scan the 256 bins to find median
 // median value of 5x5=25 elements is bin containing 13th value
 int count = 0;
 for (int ii=0; ii<256; i++) {
 if (count + histogram[ii] >= 13)
 output[j*WIDTH + i] = uint8(ii);
 count += histogram[ii];
 }
 }
}

▪ O(N2) work-per-pixel solution for 8-bit pixel data (radix sort 8 bit-integer data)
- Bin all pixels in support region, then scan histogram bins to find median

See Weiss [SIGGRAPH 2006] for
O(lg N) work-per-pixel median filter
(incrementally updates histogram)

 Stanford CS348K, Fall 2018

Bilateral filter

Example use of bilateral filter: removing noise while preserving image edges

 Stanford CS348K, Fall 2018

▪ The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels
on the “other side” of strong edges. f (x) defines what “strong edge means”

▪ Spatial distance weight term f (x) could itself be a gaussian
- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Bilateral filter

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a
truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity difference.
(non-linear filter: like the median filter, the filter’s weights depend on input image content)

Gaussian blur kernel Input image

Re-weight based on difference
in input image pixel values

For all pixels in support region
of Gaussian kernel

BF[I](p) =
1

Wp

X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Wp =
X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Normalization

 Stanford CS348K, Fall 2018

Bilateral filter

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with significantly different intensity
as p contribute little to filtered result (they
are “on the “other side of the edge”

Input image G(): gaussian about input pixel p

Input pixel p

f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

 Stanford CS348K, Fall 2018

Bilateral filter: kernel depends on image content

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edge the bilateral filter will not respect
(it will blur across these edges)

 Stanford CS348K, Fall 2018

Denoising using non-local means
▪ Main assumption: images have repeating texture
▪ Main idea: replace pixel with average value of nearby pixels that

have a similar surrounding region

- Np and Nq are vectors of pixel values in square window around pixels p and q
(highlighted regions in figure)

- Difference between Np and Pq = “similarity” of surrounding regions (here: L2 distance)
- Cp is a normalization constant to ensure weights sum to one for pixel p.
- S is the search region (given by dotted red line in figure)

p

q

Np

Nq

NL[I](p) =
X

q2S

w(p, q)I(q)

w(p, q) =
1

Cp
e

�kNp�Nqk2

h2

 Stanford CS348K, Fall 2018

Denoising using non-local means
▪ Large weight for input pixels that have similar neighborhood as p

- Intuition: “filtered result is the average of pixels like this one”
- In example below-right: q1 and q2 have high weight, q3 has low weight

Buades et al. CVPR 2005

(A) (B)

(C) (D)

In each image pair above:
- Image at left shows the pixel to denoise.
- Image at right shows weights of pixels in 21x21-

pixel kernel support window.

 Stanford CS348K, Fall 2018

End of aside on image processing basics
(back to our simple camera pipeline)

 Stanford CS348K, Fall 2018Image credit: https://www.colorexpertsbd.com/blog/how-to-fix-blurry-photos-induced-by-camera-shake-in-photoshop

Low light conditions need long exposure…
blur due to camera shake

 Stanford CS348K, Fall 2018

Noise vs blur tradeoffLow light photo: most regions underexposed
(short exposure) to avoid blur + some region
close to overexposed

 Stanford CS348K, Fall 2018

Brightened image to see detail in dark
regions, notice noise in dark regions

 Stanford CS348K, Fall 2018

Attempt to denoise… splotchy effect
remains

 Stanford CS348K, Fall 2018

Walking people are blurred…

 Stanford CS348K, Fall 2018

Walking people are blurred…

 Stanford CS348K, Fall 2018

Also still significant noise.

 Stanford CS348K, Fall 2018

Idea: merge sequence of captures

▪ Long exposure: reduces noise (acquires more light), but introduces blur
(camera shake or scene movement)

▪ Short exposure: sharper image, but lower signal/noise ratio

▪ Idea: take sequence of shorter exposures, but align images in software,
then merge them into a single sharp image with high signal to noise ratio

stream of raw frames
low-resolution preview

from hardware ISP

 burst of raw frames full-resolution
align & merge

white balance,
demosaic,

chroma denoise

dehaze,
global tone map

local tone map
(exposure fusion)

sharpen,
hue & saturation

live
viewfinder

after
shutter
press

exposure and gain

Figure 3: Overview of our two processing pipelines. The input to both pipelines is a stream of Bayer mosaic (raw) images at full sensor
resolution (for example, 12 Mpix) at up to 30 frames per second. When the camera app is launched, only the viewfinder (top row) is active.
This pipeline converts raw images into low-resolution images for display on the mobile device’s screen, possibly at a lower frame rate. In
our current implementation the viewfinder is 1.6 Mpix and is updated at 15–30 frames per second. When the shutter is pressed, this pipeline
suspends briefly, a burst of frames is captured at constant exposure, stored temporarily in main memory, and the software pipeline (bottom row)
is activated. This pipeline aligns and merges the frames in the burst (sections 4 and 5), producing a single intermediate image of high bit depth,
then applies color and tone mapping (section 6) to produce a single full-resolution 8-bit output photograph for compression and storage in
flash memory. In our implementation this photograph is 12 Mpix and is computed in about 4 seconds on the mobile device.

method for aligning and merging frames in isolation from the rest of
our system. Finally, we have created an archive of several thousand
raw input bursts with associated output [Google Inc. 2016b], so
others can improve upon or compare against our technique.

2 Overview of capture and processing

Figure 3 summarizes our capture and image processing system. It
consists of a real-time pipeline (top row) that produces a continu-
ous low-resolution viewfinder stream, and a non-real-time pipeline
(bottom row) that produces a single high-resolution image.

In our current implementation the viewfinder stream is computed
by a hardware Image Signal Processor (ISP) on the mobile device’s
System on a Chip (SoC). By contrast the high-resolution output
image is computed in software running on the SoC’s application
processor. To achieve good performance this software is written in
Halide [Ragan-Kelley et al. 2012]. We utilize an ISP to handle the
viewfinder because it is power efficient. However, its images look
different than those computed by our software. In other words, our
viewfinder is not WYSIWYG.

A key enabling technology for our approach is the ability to request
a specific exposure time and gain for each frame in a burst. For this
we employ the Camera2 API [Google Inc. 2016a] available on select
Android phones. Camera2 utilizes a request-based architecture based
on the Frankencamera [Adams et al. 2010]. Another advantage of
Camera2 is that it provides access to Bayer raw imagery, allowing
us to bypass the ISP. As shown in figure 3 we use raw imagery
in two places: (1) to determine exposure and gain from the same
stream used by the ISP to produce the viewfinder, and (2) to capture
the burst used to compute a high-resolution photograph. Using raw
images conveys several advantages:

• Increased dynamic range. The pixels in raw images are typ-
ically 10 bits, whereas the YUV (or RGB) pixels produced
by mobile ISPs are typically 8 bits. The actual advantage is
less than 2 bits, because raw is linear and YUV already has a
gamma curve, but it is not negligible.

• Linearity. After subtracting a black level offset, raw images
are proportional to scene brightness, whereas images output by
ISPs include nonlinear tone mapping. Linearity lets us model
sensor noise accurately, which makes alignment and merging
more reliable, and also makes auto-exposure easier.

• Portability. Merging the images produced by an ISP entails
modeling and reversing its processing, which is proprietary
and scene dependent [Kim et al. 2012]. By starting from raw
images we can omit these steps, which makes it easier to port
our system to new cameras.

In the academic literature, burst fusion methods based on raw im-
agery [Farsiu et al. 2006; Heide et al. 2014] are relatively uncommon.
One drawback of raw imagery is that we need to implement the en-
tire photographic pipeline, including correction of lens shading and
chromatic aberration, and demosaicking. (These correction steps
have been omitted from figure 3 for brevity.) Fortunately, since
our alignment and merging algorithm operates on raw images, the
expensive demosaicking step need only be performed once—on a
single merged image, rather than on every frame in the burst.

3 Auto-exposure

An important function of a mobile ISP is to continuously adjust
exposure time, gain, focus, and white balance as the user aims the
camera. In principle we could adopt the ISP’s auto-exposure, reusing
the capture settings from a recent viewfinder frame when requesting
our constant-exposure burst. For scenes with moderate dynamic
range this strategy works well. However, for scenes with high
dynamic range, the captured images may include blown highlights
or underexposed subjects that cannot be recovered by later HDR
tone mapping.

To address this, we develop a custom auto-exposure algorithm aware
of future tone mapping, responsible for determining not only the
overall exposure but also the dynamic range compression to come.
Our approach for handling HDR scenes consists of three steps:

1. deliberately underexpose so that fewer pixels saturate,

Algorithm used in Google Pixel Phones [Hasinoff 16]

 Stanford CS348K, Fall 2018

Align and merge algorithm

4 Aligning Frames

In the context of our high-resolution pipeline, alignment consists of
finding a dense correspondence from each alternate (non-reference)
frame of our burst to a chosen reference frame. This correspondence
problem is well-studied, with solutions ranging from optical flow
[Horn and Schunk 1981; Lucas and Kanade 1981], which performs
iterative optimization under assumptions of smoothness and bright-
ness constancy, to more recent techniques that use patches or feature
descriptors to construct and “densify” a sparse correspondence [Liu
et al. 2011; Brox and Malik 2011], or that use image oversegmenta-
tions and directly reason about geometry and occlusion [Yamaguchi
et al. 2014]. In the computer vision literature, optical flow tech-
niques are evaluated primarily by quality on established benchmarks
[Baker et al. 2011; Menze and Geiger 2015]. As a result, most tech-
niques produce high-quality correspondences, but at a significant
computational cost—at time of submission, the top 5 techniques on
the KITTI optical flow benchmark [Menze and Geiger 2015] require
between 1.7 and 107 minutes per Mpix in desktop environments.

Unfortunately, our strong constraints on speed, memory, and power
preclude nearly all of these techniques. However, because our merg-
ing procedure (section 5) is robust to both small and gross alignment
errors, we can construct a simple algorithm that meets our require-
ments. Much like systems for video compression [Wiegand et al.
2003], our approach is designed to strike a balance between compu-
tational cost and correspondence quality. Our alignment algorithm
runs at 24 milliseconds per Mpix on a mobile device. We achieve
this performance using a frequency-domain acceleration method
similar to [Lewis 1995] together with careful engineering.

Reference frame selection To address blur induced by both hand
and scene motion we choose the reference frame to be the sharpest
frame in a subset of the burst, according to a simple metric based
on gradients in the green channel of the raw input. This follows a
general strategy known as lucky imaging [Joshi and Cohen 2010].
To minimize perceived shutter lag, we choose the reference frame
from the first 3 frames in the burst.

Handling raw images Because our input consists of Bayer raw
images, alignment poses a special challenge. The four color planes
of a raw image are undersampled, making alignment an ill-posed
problem. Although we could demosaic the input to estimate RGB
values for every pixel, running even a low-quality demosaic on all
burst frames would be prohibitively expensive. We circumvent this
problem by estimating displacements only up to a multiple of 2
pixels. Displacements subject to this constraint have the convenient
property that displaced Bayer samples have coincident colors. In
effect, our approach defers the undersampling problem to our merge
stage, where image mismatch due to aliasing is treated like any other
form of misalignment. We implement this strategy by averaging
2⇥2 blocks of Bayer RGGB samples, so that we align downsampled
3 Mpix grayscale images instead of 12 Mpix raw images.

Hierarchical alignment To align an alternate frame to our refer-
ence frame, we perform a coarse-to-fine alignment on four-level
Gaussian pyramids of the downsampled-to-gray raw input. As fig-
ure 5 illustrates, we produce a tile-based alignment for each pyramid
level, using the alignments from the coarser scale as an initial guess.
Each reference tile’s alignment is the offset that minimizes the fol-
lowing distance measure relating it to candidate tiles in the alternate
image:

Dp(u, v) =
n�1X

y=0

n�1X

x=0

|T (x, y)� I(x+ u+ u0, y+ v+ v0)|p (1)

(a) Image pair (b) Intermediate alignment fields

Figure 5: (a) A pair of 3 Mpix grayscale images. (b) The intermedi-
ate and final outputs of our multi-scale alignment, where hue and
saturation indicate direction and magnitude of displacement (see the
inset color circle). At the finest pyramid level (bottom right), tiles
are 32⇥ 32 pixels and the maximum displacement is 64 pixels. The
large regions of saturated colors show that a hierarchical algorithm
is essential; our method supports displacements up to 169 pixels.
Although our displacements contain errors, they are cheap to com-
pute and sufficiently accurate to use as input to our merging stage.

where T is a tile of the reference image, I is a larger search area of
the alternate image, p is the power of the norm used for alignment
(1 or 2, discussed later), n is the size of the tile (8 or 16, discussed
later), and (u0, v0) is the initial alignment inherited by the tile from
the coarser level of the pyramid.

The model in equation 1 implies several assumptions about mo-
tion in our bursts. We assume piecewise translation, which is true
in the limit as the patch approaches a single pixel, but can be a
limiting assumption for larger patches. By minimizing absolute
error between image patches instead of, say, maximizing normal-
ized cross-correlation, we are not invariant to changes in brightness
and contrast. However, this is not a disadvantage, because camera
exposure is fixed and illumination is unlikely to change quickly over
the duration of our bursts.

Upsampling the coarse alignment to the next level of the pyramid
is challenging when the coarse alignment straddles object or mo-
tion boundaries. In particular, standard upsampling methods like
nearest-neighbor and bilinear interpolation can fail when the best
displacement for an upsampled tile is not represented in the search
area around the initial guess. In our system, we address this problem
by evaluating multiple hypotheses for each upsampled alignment,
choosing the alignment with minimum L1 residual between the ref-
erence and alternate frames. We take as candidates the alignments
for the 3 nearest coarse-scale tiles, the nearest neighbor tile plus
the next-nearest tiles in each dimension. This approach is similar
in spirit to SimpleFlow [Tao et al. 2012], which also uses image
content to inform the upsampling.

In our approach we make a number of heuristic decisions regarding
decimation, patch size, search radius, and the choice of norm in
equation 1. One crucial decision is to align differently depending on
pyramid scale. In particular, at coarse scales we compute a sub-pixel
alignment, minimize L2 residuals, and use a large search radius.
Sub-pixel alignment is valuable at coarse scales because it increases
the accuracy of initialization and allows aggressive pyramid dec-
imation. At the finest scale of our pyramid, we instead compute
pixel-level alignment, minimize L1 residuals, and limit ourselves to
a small search radius. Only pixel-level alignment is needed here, as
our current merging procedure cannot make use of sub-pixel align-
ment. More detail explaining these decisions, plus a description
of how the computation of D1 can be made fast with a brute-force
implementation, can be found in the supplement.

▪ For each image in burst, align to reference frame
(use sharpest photo as reference frame)
- Compute optical flow field aligning image pair

▪ Simple merge algorithm: warp images according
to flow, and sum

▪ More sophisticated techniques only merge pixels
where confidence in alignment is (use noisy
reference pixels when alignment fails)

4 Aligning Frames

In the context of our high-resolution pipeline, alignment consists of
finding a dense correspondence from each alternate (non-reference)
frame of our burst to a chosen reference frame. This correspondence
problem is well-studied, with solutions ranging from optical flow
[Horn and Schunk 1981; Lucas and Kanade 1981], which performs
iterative optimization under assumptions of smoothness and bright-
ness constancy, to more recent techniques that use patches or feature
descriptors to construct and “densify” a sparse correspondence [Liu
et al. 2011; Brox and Malik 2011], or that use image oversegmenta-
tions and directly reason about geometry and occlusion [Yamaguchi
et al. 2014]. In the computer vision literature, optical flow tech-
niques are evaluated primarily by quality on established benchmarks
[Baker et al. 2011; Menze and Geiger 2015]. As a result, most tech-
niques produce high-quality correspondences, but at a significant
computational cost—at time of submission, the top 5 techniques on
the KITTI optical flow benchmark [Menze and Geiger 2015] require
between 1.7 and 107 minutes per Mpix in desktop environments.

Unfortunately, our strong constraints on speed, memory, and power
preclude nearly all of these techniques. However, because our merg-
ing procedure (section 5) is robust to both small and gross alignment
errors, we can construct a simple algorithm that meets our require-
ments. Much like systems for video compression [Wiegand et al.
2003], our approach is designed to strike a balance between compu-
tational cost and correspondence quality. Our alignment algorithm
runs at 24 milliseconds per Mpix on a mobile device. We achieve
this performance using a frequency-domain acceleration method
similar to [Lewis 1995] together with careful engineering.

Reference frame selection To address blur induced by both hand
and scene motion we choose the reference frame to be the sharpest
frame in a subset of the burst, according to a simple metric based
on gradients in the green channel of the raw input. This follows a
general strategy known as lucky imaging [Joshi and Cohen 2010].
To minimize perceived shutter lag, we choose the reference frame
from the first 3 frames in the burst.

Handling raw images Because our input consists of Bayer raw
images, alignment poses a special challenge. The four color planes
of a raw image are undersampled, making alignment an ill-posed
problem. Although we could demosaic the input to estimate RGB
values for every pixel, running even a low-quality demosaic on all
burst frames would be prohibitively expensive. We circumvent this
problem by estimating displacements only up to a multiple of 2
pixels. Displacements subject to this constraint have the convenient
property that displaced Bayer samples have coincident colors. In
effect, our approach defers the undersampling problem to our merge
stage, where image mismatch due to aliasing is treated like any other
form of misalignment. We implement this strategy by averaging
2⇥2 blocks of Bayer RGGB samples, so that we align downsampled
3 Mpix grayscale images instead of 12 Mpix raw images.

Hierarchical alignment To align an alternate frame to our refer-
ence frame, we perform a coarse-to-fine alignment on four-level
Gaussian pyramids of the downsampled-to-gray raw input. As fig-
ure 5 illustrates, we produce a tile-based alignment for each pyramid
level, using the alignments from the coarser scale as an initial guess.
Each reference tile’s alignment is the offset that minimizes the fol-
lowing distance measure relating it to candidate tiles in the alternate
image:

Dp(u, v) =
n�1X

y=0

n�1X

x=0

|T (x, y)� I(x+ u+ u0, y+ v+ v0)|p (1)

(a) Image pair (b) Intermediate alignment fields

Figure 5: (a) A pair of 3 Mpix grayscale images. (b) The intermedi-
ate and final outputs of our multi-scale alignment, where hue and
saturation indicate direction and magnitude of displacement (see the
inset color circle). At the finest pyramid level (bottom right), tiles
are 32⇥ 32 pixels and the maximum displacement is 64 pixels. The
large regions of saturated colors show that a hierarchical algorithm
is essential; our method supports displacements up to 169 pixels.
Although our displacements contain errors, they are cheap to com-
pute and sufficiently accurate to use as input to our merging stage.

where T is a tile of the reference image, I is a larger search area of
the alternate image, p is the power of the norm used for alignment
(1 or 2, discussed later), n is the size of the tile (8 or 16, discussed
later), and (u0, v0) is the initial alignment inherited by the tile from
the coarser level of the pyramid.

The model in equation 1 implies several assumptions about mo-
tion in our bursts. We assume piecewise translation, which is true
in the limit as the patch approaches a single pixel, but can be a
limiting assumption for larger patches. By minimizing absolute
error between image patches instead of, say, maximizing normal-
ized cross-correlation, we are not invariant to changes in brightness
and contrast. However, this is not a disadvantage, because camera
exposure is fixed and illumination is unlikely to change quickly over
the duration of our bursts.

Upsampling the coarse alignment to the next level of the pyramid
is challenging when the coarse alignment straddles object or mo-
tion boundaries. In particular, standard upsampling methods like
nearest-neighbor and bilinear interpolation can fail when the best
displacement for an upsampled tile is not represented in the search
area around the initial guess. In our system, we address this problem
by evaluating multiple hypotheses for each upsampled alignment,
choosing the alignment with minimum L1 residual between the ref-
erence and alternate frames. We take as candidates the alignments
for the 3 nearest coarse-scale tiles, the nearest neighbor tile plus
the next-nearest tiles in each dimension. This approach is similar
in spirit to SimpleFlow [Tao et al. 2012], which also uses image
content to inform the upsampling.

In our approach we make a number of heuristic decisions regarding
decimation, patch size, search radius, and the choice of norm in
equation 1. One crucial decision is to align differently depending on
pyramid scale. In particular, at coarse scales we compute a sub-pixel
alignment, minimize L2 residuals, and use a large search radius.
Sub-pixel alignment is valuable at coarse scales because it increases
the accuracy of initialization and allows aggressive pyramid dec-
imation. At the finest scale of our pyramid, we instead compute
pixel-level alignment, minimize L1 residuals, and limit ourselves to
a small search radius. Only pixel-level alignment is needed here, as
our current merging procedure cannot make use of sub-pixel align-
ment. More detail explaining these decisions, plus a description
of how the computation of D1 can be made fast with a brute-force
implementation, can be found in the supplement.

Image pair

Reference

Frame to align

Visualization of flow

[Image credit: Hasinoff 16]

 Stanford CS348K, Fall 2018

Results of align and merge
Al

ig
nm

en
tf

ai
lu

re
Su

cc
es

sf
ul

al
ig

nm
en

t
Fu

ll
im

ag
e

(a) Reference frame (b) Temporal mean (c) Temporal mean with alignment (d) Robust merge with alignment

Figure 6: Merging 8 frames of a moving scene. The top row is the full image, the middle row shows a crop where alignment succeeds, and the
bottom row shows a crop where alignment partially fails. (a) One frame from the burst is chosen as the reference. (b) Averaging all 8 frames
without alignment produces ghosts in regions exhibiting motion. (c) Averaging with alignment eliminates ghosts in some regions (middle), but
fails in others (bottom). When alignment is successful (middle row), the temporal mean resembles the reference; however, when alignment fails
(bottom) the mean is different from the reference frame, leaving ghosts. (d) The result of our robust merge closely resembles the reference frame
even when alignment fails. Despite alignment failure, some features are partially denoised. Note the yellow roof light in the foreground and the
person in the background.

Where our method departs from other frequency-based denoising
methods is our pairwise treatment of frames in the temporal dimen-
sion. To build intuition, a simple way to merge over the temporal
dimension would be to compute the average for each frequency co-
efficient. This naı̈ve averaging filter can be thought of as expressing
an estimate for the denoised reference frame:

T̃0(!) =
1
N

N�1X

z=0

Tz(!) (5)

While this performs well when alignment is successful, it is not
robust to alignment failure (see figure 6c). Because the 2D DFT is
linear, this filter is actually equivalent to a temporal average in the
spatial domain.

To add robustness, we instead construct an expression similar to
equation 5, but incorporate a filter that lets us control the contribution
of alternate frames:

T̃0(!) =
1
N

N�1X

z=0

Tz(!) +Az(!)[T0(!)� Tz(!)] (6)

For a given frequency, Az controls the degree to which we merge
alternate frame z into the final result versus falling back to the
reference frame. The body of this sum can be rewritten as (1�Az) ·
Tz + Az · T0 to emphasize that Az controls a linear interpolation

between Tz and T0. Since the contribution of each alternate frame is
adjusted on a per-frequency basis, alignment failure can be partial, in
that rejected image content for one spatial frequency will not corrupt
other frequencies.

We are now left with the task of defining Az to attenuate frequency
coefficients that do not match the reference. In particular, we want
Tz to contribute to the merged result when its difference from T0

can be ascribed to noise, and for its contribution to be suppressed
when it differs from T0 due to poor alignment or other problems. In
other words, Az is a shrinkage operator. Our definition of Az is a
variant of the classic Wiener filter:

Az(!) =
|Dz(!)|2

|Dz(!)|2 + c�2
(7)

where Dz(!) = T0(!)� Tz(!), the noise variance �2 is provided
by our noise model, and c is a constant that accounts for the scaling
of noise variance in the construction of Dz and includes a further
tuning factor (in our implementation, fixed to 8) that increases noise
reduction at the expense of some robustness. The construction of
Dz scales the noise variance by a factor of n2 for the number of 2D
DFT samples, a factor of 1/42 for the window function (described
later), and a factor of 2 for its definition as a difference of two tiles.
We tried several alternative shrinkage operators, such as hard and
soft thresholding [Donoho 1995], and found this filter to provide the
best balance between noise reduction strength and visual artifacts.

Details of alignment and merging algorithm in tonight’s reading (and assignment 1)

[Hasinoff 16]

[Image credit: Hasinoff 16]

 Stanford CS348K, Fall 2018

Gamma correction
(global tone adjustment)

 Stanford CS348K, Fall 2018

Lightness (perceived brightness) aka luma

Radiance
(energy spectrum

from scene)

∫=Luminance (Y)Lightness (L)
?

Spectral sensitivity of eye
(eye’s response curve)

Dark adapted eye: L* ∝ Y 0.4
Bright adapted eye: L* ∝ Y 0.5

In a dark room, you turn on a light with luminance: Y1

You turn on a second light that is identical to the first. Total output is now: Y2 = 2Y1

Total output appears times brighter to dark-adapted human20.4 = 1.319

Note: Lightness (L*) is often referred to as luma (Y’)

(Response of eye)(Perceived by brain)

 Stanford CS348K, Fall 2018

Consider an image with pixel values encoding
luminance (linear in energy hitting sensor)

Luminance (Y)

Pe
rc

ei
ve

d
br

ig
ht

ne
ss

: L
*

Consider 12-bit sensor pixel:
Can represent 4096 unique luminance values
in output image

Values are ~ linear in luminance since they
represent the sensor’s response

L* = Y.45

 Stanford CS348K, Fall 2018

Problem: quantization error

Luminance (Y)

Pe
rc

ei
ve

d
br

ig
ht

ne
ss

: L
*

Many common image formats store 8 bits per channel (256 unique values)
Insufficient precision to represent brightness in darker regions of image

Dark regions of image: perceived difference between
pixels that differ by one step in luminance is large!
(quantization error: gradients in luminance will not
appear smooth.)

Bright regions of image: perceived difference between
pixels that differ by one step in luminance is small!
(human may not even be able to perceive difference
between pixels that differ by one step in luminance!)

L* = Y.45

Rule of thumb: human eye cannot differentiate <1% differences in luminance

 Stanford CS348K, Fall 2018

Store lightness in 8-bit value, not luminance

Luminance (Y)

Pe
rc

ei
ve

d
br

ig
ht

ne
ss

: L
*

Solution: pixel stores Y0.45

Must compute (pixel_value)2.2 prior to display on LCD

Idea: distribute representable pixel values evenly with respect to perceived brightness,
not evenly in luminance (make more efficient use of available bits)

Warning: must take caution with subsequent
pixel processing operations once pixels are
encoded in a space that is not linear in
luminance.

e.g., When adding images should you add pixel
values that are encoded as lightness or as
luminance?

 Stanford CS348K, Fall 2018

Local-tone adjustment

Improve picture’s aesthetics by locally
adjusting contrast, boosting dark
regions, decreasing bright regions
(more details in the next lecture)

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

Weights

Combined image
(unique weights per pixel)

Image credit: Mertens 2007

 Stanford CS348K, Fall 2018

Summary: simplified image processing pipeline

▪ Correct pixel defects

▪ Align and merge

▪ Correct for sensor bias (using measurements of optically black pixels)

▪ Vignetting compensation

▪ White balance

▪ Demosaic

▪ Denoise

▪ Gamma Correction (non-linear mapping)

▪ Local tone mapping

▪ Final adjustments sharpen, fix chromatic aberrations,
 hue adjust, etc.

(10-12 bits per pixel)
1 intensity value per pixel
Pixel values linear in energy

3x12 bits per pixel
RGB intensity per pixel
Pixel values linear in energy

3x8-bits per pixel
Pixel values perceptually linear

