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Lecture 1:

Course Introduction + 
Review of Throughput Hardware Concepts
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Hello from the course staff

Your instructor (me) Your CA!

Prof. Kayvon Alex Poms
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Visual Computing Systems 
— Some History

(why I get so excited about this topic)
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Ivan Sutherland’s Sketchpad on MIT TX-2 (1962)
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The frame buffer 16 2K shift registers (640 x 486 x 8 bits)
Shoup’s SuperPaint (PARC 1972-73)
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The frame buffer
Shoup’s SuperPaint (PARC 1972-73)

16 2K shift registers (640 x 486 x 8 bits)
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Xerox Alto (1973)

TI 74181 ALUBravo (WYSIWYG)
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UNC Pixel Planes (1981), computation-enhanced frame buffer
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Jim Clark’s Geometry Engine 
(1982) 

ASIC for geometric transforms 
used in real-time graphics
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NVIDIA Titan X Pascal GPU (2017)

~ 12 TFLOPs fp32
Similar to ASCI Q (top US supercomputer circa 2002)
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Far Cry 5
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Digital photography: major driver of 
compute capability of modern smartphones

High dynamic range (HDR) photography

Portrait mode 
(simulate effects of large aperture DSLR, 

or even physically impossible lens)
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Modern smartphones utilize multiple processing 
units to quickly generate high-quality images

Image Credit: TechInsights Inc.

Apple A11 Bionic *

* Disclaimer: blocks estimated by TechInsights, 
not an official Apple reference.
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On every vehicle: analyzing images for robot navigation
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Datacenter-scale applications

Google TPU pods

Image Credit: TechInsights Inc.
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Youtube Transcode, stream, analyze…

https://www.youtube.com/watch?v=kJQP7kiw5Fk
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Facebook live video
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Unique visual experiences

Intel “True View”: 38 cameras in stadium used to reconstruct 3D, 
system renders new view from quarterback’s eyes

https://www.youtube.com/watch?v=Q4L6Ffkcjz8
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Snap Spectacles
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What is this course about? 

Accelerator hardware architecture? 

Graphics/vision/digital photography algorithms? 

Programming languages?
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What we will be learning about

Visual Computing Workloads 
Algorithms for image/video processing, 
DNN evaluation, data compression, etc.

Table 4. Results on NYUDv2. RGBD is early-fusion of the
RGB and depth channels at the input. HHA is the depth embed-
ding of [15] as horizontal disparity, height above ground, and
the angle of the local surface normal with the inferred gravity
direction. RGB-HHA is the jointly trained late fusion model
that sums RGB and HHA predictions.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

Gupta et al. [15] 60.3 - 28.6 47.0
FCN-32s RGB 60.0 42.2 29.2 43.9

FCN-32s RGBD 61.5 42.4 30.5 45.5
FCN-32s HHA 57.1 35.2 24.2 40.4

FCN-32s RGB-HHA 64.3 44.9 32.8 48.0
FCN-16s RGB-HHA 65.4 46.1 34.0 49.5

NYUDv2 [33] is an RGB-D dataset collected using the
Microsoft Kinect. It has 1449 RGB-D images, with pixel-
wise labels that have been coalesced into a 40 class seman-
tic segmentation task by Gupta et al. [14]. We report results
on the standard split of 795 training images and 654 testing
images. (Note: all model selection is performed on PAS-
CAL 2011 val.) Table 4 gives the performance of our model
in several variations. First we train our unmodified coarse
model (FCN-32s) on RGB images. To add depth informa-
tion, we train on a model upgraded to take four-channel
RGB-D input (early fusion). This provides little benefit,
perhaps due to the difficultly of propagating meaningful
gradients all the way through the model. Following the suc-
cess of Gupta et al. [15], we try the three-dimensional HHA
encoding of depth, training nets on just this information, as
well as a “late fusion” of RGB and HHA where the predic-
tions from both nets are summed at the final layer, and the
resulting two-stream net is learned end-to-end. Finally we
upgrade this late fusion net to a 16-stride version.

SIFT Flow is a dataset of 2,688 images with pixel labels
for 33 semantic categories (“bridge”, “mountain”, “sun”),
as well as three geometric categories (“horizontal”, “verti-
cal”, and “sky”). An FCN can naturally learn a joint repre-
sentation that simultaneously predicts both types of labels.
We learn a two-headed version of FCN-16s with seman-
tic and geometric prediction layers and losses. The learned
model performs as well on both tasks as two independently
trained models, while learning and inference are essentially
as fast as each independent model by itself. The results in
Table 5, computed on the standard split into 2,488 training
and 200 test images,9 show state-of-the-art performance on
both tasks.

9Three of the SIFT Flow categories are not present in the test set. We
made predictions across all 33 categories, but only included categories ac-
tually present in the test set in our evaluation. (An earlier version of this pa-
per reported a lower mean IU, which included all categories either present
or predicted in the evaluation.)

Table 5. Results on SIFT Flow9 with class segmentation
(center) and geometric segmentation (right). Tighe [36] is
a non-parametric transfer method. Tighe 1 is an exemplar
SVM while 2 is SVM + MRF. Farabet is a multi-scale con-
vnet trained on class-balanced samples (1) or natural frequency
samples (2). Pinheiro is a multi-scale, recurrent convnet, de-
noted RCNN3 (�3). The metric for geometry is pixel accuracy.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

geom.
acc.

Liu et al. [25] 76.7 - - - -
Tighe et al. [36] - - - - 90.8

Tighe et al. [37] 1 75.6 41.1 - - -
Tighe et al. [37] 2 78.6 39.2 - - -
Farabet et al. [9] 1 72.3 50.8 - - -
Farabet et al. [9] 2 78.5 29.6 - - -
Pinheiro et al. [31] 77.7 29.8 - - -

FCN-16s 85.2 51.7 39.5 76.1 94.3

FCN-8s SDS [17] Ground Truth Image

Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan et al. [17]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row),
and robustness to occluders (third row). The fourth row shows a
failure case: the net sees lifejackets in a boat as people.

6. Conclusion

Fully convolutional networks are a rich class of mod-
els, of which modern classification convnets are a spe-
cial case. Recognizing this, extending these classification
nets to segmentation, and improving the architecture with
multi-resolution layer combinations dramatically improves
the state-of-the-art, while simultaneously simplifying and
speeding up learning and inference.

Acknowledgements This work was supported in part

If you don’t understand key 
workload characteristics, 

how can you design a good 
system?
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What we will be learning about

If must understand key 
constraints of modern hardware 

to create algorithms that are well 
suited to run on it efficiently.

Modern Hardware 
Organization

High-throughput hardware designs 
(parallel, heterogeneous, and specialized) 

fundamental constraints like area and power
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What we will be learning about

Good programming abstractions enable 
productive development of applications, 

while also providing system implementors 
flexibility to explore highly efficient 

implementations

Programming Model 
Design

Choice of programming abstractions, 
level of abstraction issues, 

domain-specific vs. general purpose, etc.

Halide
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This course is about architecting efficient 
and scalable systems…
It is about the process of understanding the fundamental 
structure of problems in the visual computing domain, and 
then leveraging that understanding to… 

To design more efficient and more robust algorithms 

To build the most efficient hardware to run these algorithms 

To design programming systems to make developing new 
applications simpler, more productive, and highly performant
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Course Logistics
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Logistics
▪ Course web site: 

- http://cs348k.stanford.edu 
- My goal is to post lecture slides the night before class 

▪ All announcements will go out via Piazza (not via Canvas) 
- https://piazza.com/class/jlwy0xxpof55v

http://cs348k.stanford.edu
https://piazza.com/class/jlwy0xxpof55v
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Expectations of you
▪ 35% participation 

- There will be ~1 assigned paper reading per class 
- Everyone is expected to come to class and participate in discussions on readings 
- You are encouraged discuss papers and  lectures on the course site 

▪ 20% a multi-part programming assignments (implement and optimize a 
simple HDR photography processing pipeline) 

▪ 10% a take-home written assignment (to reinforce understanding of course 
topics) 

▪ 35% self-selected final project (teams of two) 
- I suggest you start thinking about projects now (can be teams of up to two)
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Review (or crash course): 

key principles of modern 
throughput computing hardware
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Let’s crack open a modern smartphone

Multi-core GPU 
(3D graphics, 

OpenCL data-parallel compute)

Display engine 
(compresses pixels for 

transfer to high-res screen)

Image Signal Processor 
ASIC for processing camera 

sensor pixels

Multi-core ARM CPU 
4 “big cores” + 4 “little cores”

Video encode/decode ASIC

“Hexagon” 
Programmable DSP 
data-parallel multi-media 

processing

Google Pixel 2 Phone: 
Qualcomm Snapdragon 835 SoC + Google Visual Pixel Core

Visual Pixel Core 
Programmable image 

processor and DNN accelerator
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Three things to know
1. What are these three hardware design strategies, and what 

problem/goals do they address? 
- Muti-core processing 
- SIMD processing 
- Hardware multi-threading 

2. What is the motivation for specialization via…  
- Multiple types of processors (e.g., CPUs, GPUs) 
- Custom hardware units (ASIC) 

3. Why is memory bandwidth a major constraint (often the most 
important constraint) when mapping applications to modern 
computer systems? 
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Multi-core processing
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Review: what does a processor do?
It runs programs! 

Processor executes instruction 
referenced by the program counter 
(PC) 
(executing the instruction will modify machine 
state: contents of registers, memory, CPU 
state, etc.) 

Move to next instruction … 

Then execute it… 

And so on…

PC

_main: 
100000f10: pushq %rbp 
100000f11: movq %rsp, %rbp 
100000f14: subq $32, %rsp 
100000f18: movl $0, -4(%rbp) 
100000f1f: movl %edi, -8(%rbp) 
100000f22: movq %rsi, -16(%rbp) 
100000f26: movl $1, -20(%rbp) 
100000f2d: movl $0, -24(%rbp) 
100000f34: cmpl $10, -24(%rbp) 
100000f38: jge 23 <_main+0x45> 
100000f3e: movl -20(%rbp), %eax 
100000f41: addl -20(%rbp), %eax 
100000f44: movl %eax, -20(%rbp) 
100000f47: movl -24(%rbp), %eax 
100000f4a: addl $1, %eax 
100000f4d: movl %eax, -24(%rbp) 
100000f50: jmp -33 <_main+0x24> 
100000f55: leaq 58(%rip), %rdi 
100000f5c: movl -20(%rbp), %esi 
100000f5f: movb $0, %al 
100000f61: callq 14 
100000f66: xorl %esi, %esi 
100000f68: movl %eax, -28(%rbp) 
100000f6b: movl %esi, %eax 
100000f6d: addq $32, %rsp 
100000f71: popq %rbp 
100000f72: retq
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Executing an instruction stream

x[i]

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

ld   r0, addr[r1] 
mul  r1, r0, r0 
mul  r1, r1, r0 
... 
... 
... 
... 
... 
... 
st   addr[r2], r0

result[i]
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Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

PC

My very simple processor: executes one instruction per clock

ld   r0, addr[r1] 
mul  r1, r0, r0 
mul  r1, r1, r0 
... 
... 
... 
... 
... 
... 
st   addr[r2], r0

Executing an instruction stream

result[i]

x[i]
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Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

PC

My very simple processor: executes one instruction per clock

ld   r0, addr[r1] 
mul  r1, r0, r0 
mul  r1, r1, r0 
... 
... 
... 
... 
... 
... 
st   addr[r2], r0

result[i]

Executing an instruction stream

x[i]
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Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

PC

My very simple processor: executes one instruction per clock

ld   r0, addr[r1] 
mul  r1, r0, r0 
mul  r1, r1, r0 
... 
... 
... 
... 
... 
... 
st   addr[r2], r0

result[i]

Executing an instruction stream

x[i]
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Quick aside: 
Instruction-level parallelism and 

superscalar execution
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Instruction level parallelism (ILP) example
a = x*x + y*y + z*z

// assume r0=x, r1=y, r2=z 

mul r0, r0, r0 
mul r1, r1, r1 
mul r2, r2, r2 
add r0, r0, r1 
add r3, r0, r2 

// now r3 stores value of program variable ‘a’

Consider the following program:

This program has five instructions, so it will take five clocks to execute, correct? 
Can we do better?
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ILP example
a = x*x + y*y + z*z

x

+

a

+

ILP = 3

ILP = 1

ILP = 1

x

*

y y

*

z z

*
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Superscalar execution
a = x*x + y*y + z*z

// assume r0=x, r1=y, r2=z 

mul r0, r0, r0 
mul r1, r1, r1 
mul r2, r2, r2 
add r0, r0, r1 
add r3, r0, r2 

// r3 stores value of variable ‘a’

Superscalar execution: processor automatically finds independent instructions in an 
instruction sequence and executes them in parallel on multiple execution units! 

1. 
2.  
3. 
4.  
5.

In this example: instructions 1, 2, and 3 can be executed in parallel 
(on a superscalar processor that determines that the lack of dependencies exists) 

But instruction 4 must come after instructions 1 and 2 

And instruction 5 must come after instruction 4
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Superscalar execution

void sinx(int N, int terms, float x) 
{ 
    float value = x; 
    float numer = x * x * x; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x * x; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      return value; 
}

Program: computes sin of input x via Taylor expansion

Execution 
Context

My single core, superscalar processor: 
executes up to two instructions per clock 

from a single instruction stream.

Fetch/ 
Decode

Exec 
1

Fetch/ 
Decode

Exec 
2

Independent operations in 
instruction stream 

(They are detected by the processor 
at run-time and may be executed in 
parallel on execution units 1 and 2)
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Now consider a program that computes 
the sine of many numbers…
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Example program

void sinx(int N, int terms, float* x, float* result) 
{ 
   for (int i=0; i<N; i++) 
   { 
    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      result[i] = value; 
   } 
}

Compute sin(x) using Taylor expansion:   sin(x) = x - x3/3! + x5/5! - x7/7! + ... 
for each element of an array of N floating-point numbers
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Multi-core: process multiple instruction streams in parallel 

Sixteen cores, sixteen simultaneous instruction streams
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Core 1

Multi-core examples

Intel “Skylake” Core i7 quad-core CPU 
(2015)

NVIDIA GP104 (GTX 1080) GPU 
20 replicated (“SM”) cores 

(2016)

Core 4

Shared L3 cache

Core 2

Core 3
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More multi-core examples

Intel Xeon Phi “Knights Landing “ 76-core CPU 
(2015)

Apple A11 Bionic CPU 
Two “big” cores 

Four “small cores” 
(2017)

A9 image credit: Chipworks  (obtained via Anandtech) 
http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3

Core 1 Core 2
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SIMD processing
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Add ALUs to increase compute capability

Idea #2: 
Amortize cost/complexity of managing an 
instruction stream across many ALUs

SIMD processing 
Single instruction, multiple data 

Same instruction broadcast to all ALUs 
Executed in parallel on all ALUs

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context
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Scalar program

ld   r0, addr[r1] 
mul  r1, r0, r0 
mul  r1, r1, r0 
... 
... 
... 
... 
... 
... 
st   addr[r2], r0

void sinx(int N, int terms, float* x, float* result) 
{ 
   for (int i=0; i<N; i++) 
   { 

    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      result[i] = value; 
   } 
}

Original compiled program: 

Processes one array element using scalar 
instructions on scalar registers (e.g., 32-bit floats)
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Vector program (using AVX intrinsics)
#include <immintrin.h> 
void sinx(int N, int terms, float* x, float* sinx) 
{ 
   float three_fact = 6;  // 3!  
   for (int i=0; i<N; i+=8) 
   { 
       __m256 origx = _mm256_load_ps(&x[i]); 

    __m256 value = origx; 
    __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx)); 
    __m256 denom = _mm256_broadcast_ss(&three_fact); 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       // value += sign * numer / denom 
       __m256 tmp = 
           _mm256_div_ps(_mm256_mul_ps(_mm256_broadcast_ss(sign),numer),denom); 
       value = _mm256_add_ps(value, tmp); 

       numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx)); 
       denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3))); 
       sign *= -1; 

      } 
      _mm256_store_ps(&sinx[i], value); 
   } 
}

vloadps  xmm0, addr[r1] 
vmulps   xmm1, xmm0, xmm0 
vmulps   xmm1, xmm1, xmm0 
... 
... 
... 
... 
... 
... 
vstoreps  addr[xmm2], xmm0

Compiled program: 

Processes eight array elements 
simultaneously using vector 
instructions on 256-bit vector registers 
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16 SIMD cores: 128 elements in parallel

16 cores, 128 ALUs, 16 simultaneous instruction streams

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016
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Data-parallel expression of program
void sinx(int N, int terms, float* x, float* result) 
{ 
   // declare independent loop iterations 
   forall (int i from 0 to N-1) 
   { 
    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      result[i] = value; 
   } 
}

Semantics: loop iterations are 
“independent” 

Q. Why did I say independent and not 
parallel? 

Q. How does this abstraction facilitate 
automatic generation of both multi-
core parallel code, and vector 
instructions to make use of SIMD 
processing capabilities within a core?

(in Kayvon’s fictitious data-parallel language)
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What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

float tmp = exp(x,5.f); 

tmp *= kMyConst1; 

x = tmp + kMyConst2;  

float tmp = kMyConst1;  

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for 
each element in input array ‘A’, producing 
output into the array ‘result’)
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What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

T T T F FF F F if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

float tmp = exp(x,5.f); 

tmp *= kMyConst1; 

x = tmp + kMyConst2;  

float tmp = kMyConst1;  

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for 
each element in input array ‘A’, producing 
output into the array ‘result’)
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Mask (discard) output of ALU 

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional 
code>

T T T F FF F F

Not all ALUs do useful work!

Worst case: 1/8 peak performance

float tmp = exp(x,5.f); 

tmp *= kMyConst1; 

x = tmp + kMyConst2;  

float tmp = kMyConst1;  

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for 
each element in input array ‘A’, producing 
output into the array ‘result’)
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After branch: continue at full performance 

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

T T T F FF F F
float tmp = exp(x,5.f); 

tmp *= kMyConst1; 

x = tmp + kMyConst2;  

float tmp = kMyConst1;  

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for 
each element in input array ‘A’, producing 
output into the array ‘result’)
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Example: eight-core Intel Xeon E5-1660 v4

8 cores 
8 SIMD ALUs per core 
(AVX2 instructions)

490 GFLOPs (@3.2 GHz) 
(140 Watts)

* Showing only AVX math units, and fetch/decode unit for AVX (additional capability for integer math)
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Example: NVIDIA GTX 1080 GPU

20 cores (“SMs”) 
128 SIMD ALUs per core (@1.6 GHz) = 8.1 TFLOPs  (180 Watts)
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Part 2: 
accessing memory

Memory
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Hardware multi-threading
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Terminology
▪ Memory latency 

- The amount of time for a memory request (e.g., load, store) from a 
processor to be serviced by the memory system 

- Example: 100 cycles, 100 nsec 

▪ Memory bandwidth 
- The rate at which the memory system can provide data to a processor 

- Example: 20 GB/s
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Stalls
▪ A processor “stalls”  when it cannot run the next instruction in 

an instruction stream because of a dependency on a previous 
instruction. 

▪ Accessing memory is a major source of stalls 
ld r0 mem[r2] 
ld r1 mem[r3] 
add r0, r0, r1 

▪ Memory access times ~ 100’s of cycles 
- Memory “access time” is a measure of latency

Dependency: cannot execute ‘add’ instruction until data at mem[r2] and 
mem[r3] have been loaded from memory 
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38 GB/sec
L3 cache 

(8 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Memory 
DDR4 DRAM 

(Gigabytes)

Core 1

Core N

Review: why do modern processors have caches?
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Caches reduce length of stalls (reduce latency)
Processors run efficiently when data is resident in caches 

Caches reduce memory access latency *

38 GB/sec
L3 cache 

(8 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Memory 
DDR4 DRAM 

(Gigabytes)

Core 1

Core N

* Caches also provide high bandwidth data transfer to CPU
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Prefetching reduces stalls (hides latency)
▪ All modern CPUs have logic for prefetching data into caches 

- Dynamically analyze program’s access patterns, predict what it will access soon 

▪ Reduces stalls since data is resident in cache when accessed 

predict value of r2, initiate load 
predict value of r3, initiate load 
... 
...  
... 
... 
... 
... 
ld r0 mem[r2] 
ld r1 mem[r3] 
add r0, r0, r1

data arrives in cache

data arrives in cache

Note: Prefetching can also reduce 
performance if the guess is wrong 
(hogs bandwidth, pollutes caches) 

(more detail later in course)

These loads are cache hits
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Multi-threading reduces stalls
▪ Idea: interleave processing of multiple threads on the same 

core to hide stalls 

▪ Like prefetching, multi-threading is a latency hiding, not a 
latency reducing technique
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Hiding stalls with multi-threading

Time

Thread 1 
Elements 0 … 7

 

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 Core (1 thread)

Exec Ctx
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Hiding stalls with multi-threading

Time
 

Thread 2 
Elements 8 … 15

 

Thread 3 
Elements 16 … 23

 

Thread 4 
Elements 24 … 31

 

1 2 3 4

Thread 1 
Elements 0 … 7

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)
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Hiding stalls with multi-threading

Time
    

1 2 3 4

Stall

Runnable

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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Hiding stalls with multi-threading

Time
    

1 2 3 4

Stall

Runnable

Stall

Runnable

Done!

Stall

Runnable

Stall

Runnable

Done!

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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Throughput computing trade-off

Time
    

Stall

Runnable

Done!

Key idea of throughput-oriented systems: 
Potentially increase time to complete work by any 
one any one thread, in order to increase overall 
system throughput when running multiple threads.

During this time, this thread is runnable, but it is not being executed 
by the processor. (The core is running some other thread.)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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Kayvon’s fictitious multi-core chip
16 cores 

8 SIMD ALUs per core 

(128 total) 

4 threads per core 

16 simultaneous instruction 
streams 

64 total concurrent instruction 
streams 

512 independent pieces of work 
are needed to run chip with 
maximal latency hiding ability

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016
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= SIMD function unit, 
 control shared across 32 units 
(1 MUL-ADD per clock)

“Shared” memory 
(96 KB)

Execution contexts (registers) 
(256 KB)

▪ Instructions operate on 32 pieces of 
data at a time (instruction streams 
called “warps”).   

▪ Think: warp = thread issuing 32-wide 
vector instructions 

▪ Different instructions from up to four 
warps can be executed simultaneously 
(simultaneous multi-threading) 

▪ Up to 64 warps are interleaved on the 
SM (interleaved multi-threading) 

▪ Over 2,048 elements can be processed 
concurrently by a core

NVIDIA GTX 1080 core (“SM”)

GPUs: extreme throughput-oriented processors

Source: NVIDIA Pascal Tuning Guide

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode
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NVIDIA GTX 1080

There are 20 SM cores on the GTX 1080: 
That’s 40,960 pieces of data being processed concurrently to get maximal latency hiding!
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Another example: 
for review and to check your understanding 

(if you understand the following sequence you understand this lecture)
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Running code on a simple processor

void sinx(int N, int terms, float* x, float* result) 
{ 
   for (int i=0; i<N; i++) 
   { 
    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      result[i] = value; 
   } 
}

My very simple program: 
compute sin(x) using Taylor expansion

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

My very simple processor: 
completes one instruction per clock
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void sinx(int N, int terms, float* x, float* result) 
{ 
   for (int i=0; i<N; i++) 
   { 
    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      result[i] = value; 
   } 
}

Review: superscalar execution
Unmodified program

Execution 
Context

My single core, superscalar processor: 
executes up to two instructions per clock 

from a single instruction stream.

Fetch/ 
Decode

Exec 
1

Fetch/ 
Decode

Exec 
2

Independent operations in 
instruction stream 

(They are detected by the processor 
at run-time and may be executed in 
parallel on execution units 1 and 2)
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typedef struct { 
   int N; 
   int terms; 
   float* x; 
   float* result; 
} my_args; 

void parallel_sinx(int N, int terms, float* x, float* result) { 
    pthread_t thread_id; 
    my_args args; 

    args.N = N/2; 
    args.terms = terms; 
    args.x = x; 
    args.result = result; 

    // launch thread  
    pthread_create(&thread_id, NULL, my_thread_start, &args);  
    sinx(N - args.N, terms, x + args.N, result + args.N); // do work 
    pthread_join(thread_id, NULL); 
} 

void my_thread_start(void* thread_arg) { 
   my_args* thread_args = (my_args*)thread_arg; 
   sinx(args->N, args->terms, args->x, args->result); // do work 
}

Review: multi-core execution (two cores)
Modify program to create two threads of control (two instruction streams) 

My dual-core processor: 
executes one instruction per clock 

from an instruction stream on each core.

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)
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Review: multi-core + superscalar execution
Modify program to create two threads of control (two instruction streams) 

Execution 
Context

typedef struct { 
   int N; 
   int terms; 
   float* x; 
   float* result; 
} my_args; 

void parallel_sinx(int N, int terms, float* x, float* result) { 
    pthread_t thread_id; 
    my_args args; 

    args.N = N/2; 
    args.terms = terms; 
    args.x = x; 
    args.result = result; 

    // launch thread  
    pthread_create(&thread_id, NULL, my_thread_start, &args);  
    sinx(N - args.N, terms, x + args.N, result + args.N); // do work 
    pthread_join(thread_id, NULL); 
} 

void my_thread_start(void* thread_arg) { 
   my_args* thread_args = (my_args*)thread_arg; 
   sinx(args->N, args->terms, args->x, args->result); // do work 
}

Fetch/ 
Decode

Exec 
1

Fetch/ 
Decode

Exec 
2

Execution 
Context

Fetch/ 
Decode

Exec 
1

Fetch/ 
Decode

Exec 
2

My superscalar dual-core processor: 
executes up to two instructions per clock 
from an instruction stream on each core.
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Review: multi-core (four cores)
Modify program to create many threads of control: 
(code written in Kayvon’s fictitious data-parallel language) 

My quad-core processor: 
executes one instruction per clock 

from an instruction stream on each core.

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

void sinx(int N, int terms, float* x, float* result) 
{ 
   // declare independent loop iterations 
   forall (int i from 0 to N-1)  
   { 

    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      result[i] = value; 
   } 
}
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Review: four, 8-wide SIMD cores
Observation: program must execute many iterations of the same loop body. 
Optimization: share instruction stream across execution of multiple iterations (single instruction 
multiple data = SIMD) My SIMD quad-core processor: 

executes one 8-wide SIMD instruction per clock 
from an instruction stream on each core.

Fetch/ 
Decode

Execution 
Context

void sinx(int N, int terms, float* x, float* result) 
{ 
   // declare independent loop iterations 
   forall (int i from 0 to N-1)  
   { 

    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      result[i] = value; 
   } 
}

Fetch/ 
Decode

Execution 
Context

Fetch/ 
Decode

Execution 
Context

Fetch/ 
Decode

Execution 
Context
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Review: four SIMD, multi-threaded cores
Observation: memory operations have very long latency 
Solution: hide latency of loading data for one iteration by 
executing arithmetic instructions from other iterations
void sinx(int N, int terms, float* x, float* result) 
{ 
   // declare independent loop iterations 
   forall (int i from 0 to N-1)  
   { 

    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      result[i] = value; 
   } 
}

Fetch/ 
DecodeMemory load

Memory store

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Execution 
Context

Execution 
Context

My multi-threaded, SIMD quad-core processor: 
executes one SIMD instruction per clock 

from one instruction stream on each core.  But 
can switch to processing the other instruction 

stream when faced with a stall.
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Summary: four superscalar, SIMD, multi-threaded cores

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

My multi-threaded, superscalar, SIMD quad-core processor: 
executes up to two instructions per clock  from one instruction stream on each core 

(in this example: one SIMD instruction + one scalar instruction).  
Processor can switch to execute the other instruction stream when faced with stall.
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Connecting it all together
Kayvon’s simple quad-core processor:

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

L3 Cache
Memory 

Controller

Memory Bus 
(to DRAM)

On-chip 
interconnect

Four cores, two-way multi-threading per core (max eight threads active on chip at once), up to two 
instructions per clock per core (one of those instructions is 8-wide SIMD)
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Thought experiment
▪ You write a C application that spawns two pthreads 

▪ The application runs on the processor shown below 
- Two cores, two-execution contexts per core, up to instructions per clock, one 

instruction is an 8-wide SIMD instruction.

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

▪ Question: “who” is responsible for mapping your pthreads to the 
processor’s thread execution contexts? 
Answer: the operating system

▪ Question: If you were the OS, how would to assign the two threads to 
the four available execution contexts? 

▪ Another question: How would you 
assign threads to execution contexts 
if your C program spawned five 
pthreads?



 Stanford CS348K, Fall 2018

Another thought experiment
Task: element-wise multiplication of two vectors A and B 

Assume vectors contain millions of elements 

- Load input A[i] 
- Load input B[i] 
- Compute A[i] × B[i] 
- Store result into C[i]

=

A

B

C

×

<1% GPU efficiency… but 4.2x faster than eight-core CPU! 
(3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus will exhibit ~3% 
efficiency on this computation)

Three memory operations (12 bytes) for every MUL 
NVIDIA GTX 1080 GPU can do 2560 MULs per clock (@ 1.6 GHz) 
Need ~50 TB/sec of bandwidth to keep functional units busy (only have 320 GB/sec)
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Bandwidth limited!

Bandwidth limited!
If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Bandwidth is a critical resource 

Overcoming bandwidth limits are a common challenge for 
application developers on throughput-optimized systems.
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Hardware specialization
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Why does energy efficiency matter?
▪ General mobile processing rule: the longer a task runs the less power it can use 

- Processor’s power consumption is limited by heat generated (efficiency is 
required for more than just maximizing battery life)

Po
we

r

Time

Electrical limit:  max power that can be supplied to chip

Die temp: (junction temp -- Tj): chip becomes unreliable above this temp 
(chip can run at high power for short period of time until chip heats to Tj)

Case temp: mobile device gets too hot for user to comfortably hold 
(chip is at suitable operating temp, but heat is dissipating into case)

Battery life: chip and case are cool, but want to reduce power 
consumption to sustain long battery life for given task

Slide credit: adopted from original slide from M. Shebanow: HPG 2013 keynote 

iPhone 6 battery: 7 watt-hours 
9.7in iPad Pro battery: 28 watt-hours 
15in Macbook Pro: 99 watt-hours
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Efficiency benefits of compute specialization
▪ Rules of thumb: compared to high-quality C code on CPU... 

▪ Throughput-maximized processor architectures: e.g., GPU cores 

- Approximately 10x improvement in perf / watt 

- Assuming code maps well to wide data-parallel execution and is compute bound 

▪ Fixed-function ASIC (“application-specific integrated circuit”) 

- Can approach 100-1000x or greater improvement in perf/watt 

- Assuming code is compute bound and 
and is not floating-point math

[Source: Chung et al. 2010 , Dally 08] [Figure credit Eric Chung]



 Stanford CS348K, Fall 2018

Hardware specialization increases efficiency

[Chung et al. MICRO 2010]
lg2(N)  (data set size)

FPGA
GPUs

FPGA
GPUs

lg2(N)  (data set size)

ASIC delivers same performance 
as one CPU core with ~ 1/1000th 
the chip area. 
  
GPU cores: ~ 5-7 times more area 
efficient than CPU cores. 

ASIC delivers same performance 
as one CPU core with only ~ 
1/100th the power.
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Modern systems use specialized HW for…
▪ Image/video encode/decode  (e.g., H.264, JPG) 

▪ Audio recording/playback  

▪ Voice “wake up” (e.g., Ok Google) 

▪ Camera “RAW” processing: processing data acquired by image 
sensor into images that are pleasing to humans 

▪ Many 3D graphics tasks (rasterization, texture mapping, 
occlusion using the Z-buffer) 

▪ Deep network evaluation (Google’s Tensor Processing Unit, 
Apple Neural engine, etc.)
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Middle ground: programmable 
signal processor (Qualcomm Hexagon)

▪ Originally used for audio/LTE support on Qualcomm SoC’s 
▪ Multi-threaded, VLIW DSP 
▪ Third major programmable unit on modern Qualcomm SoCs 

- Multi-core CPU 
- Multi-core GPU 
- Hexagon DSP
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Example: Google’s Pixel Visual Core
Programmable “image processing unit” (IPU)

▪ Each core = 16x16 grid of 16 bit 
mul-add ALUs 

▪ Google’s HotChip 2018 claims: 
~10-20x more efficient than 
GPU at image processing tasks
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Summary: choosing the right tool for the job

Energy-optimized CPU
Throughput-oriented 

processor (GPU)

~10X more efficient

Credit Pat Hanrahan for this taxonomy

ASIC

~100-1000X 
more efficient

Video encode/decode, 
Audio playback, simple camera 

RAW, neural computations

Programmable DSP
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reconfigurable HW

~100X??? 
(jury still out)

Easiest to program Difficult to program 
(making it easier is 

active area of research)

Not programmable + 
costs 10-100’s millions 
of dollars to design / 

verify / create

Google’s Pixel 
Visual Core



 Stanford CS348K, Fall 2018

Data movement has high energy cost
▪ Rule of thumb in mobile system design: always seek to reduce amount of 

data transferred from memory 
- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).  

Now, we wish to reduce communication to reduce energy consumption 

▪ “Ballpark” numbers 
- Integer op: ~ 1 pJ * 
- Floating point op: ~20 pJ * 
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ 
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ 

▪ Implications 
- Reading 10 GB/sec from memory: ~1.6 watts 
- Entire power budget for mobile GPU: ~1 watt  

(remember phone is also running CPU, display, radios, etc.) 
- iPhone 6 battery: ~7 watt-hours   (note: my Macbook Pro laptop: 99 watt-hour battery) 
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values, 
rather than storing and reloading 
them, is a better answer when 
optimizing code for energy efficiency!

http://www.displaymate.com/iPad_ShootOut_1.htm
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Welcome to cs348K!
▪ Make sure you are signed up on Piazza so you get 

announcements 

▪ See website for tonight’s reading
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Extra slides: 
(More review)



 Stanford CS348K, Fall 2018

Which program performs better?

void add(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] + B[i];     
} 

void mul(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] * B[i];     
} 

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 
add(n, A, B, tmp1); 
mul(n, tmp1, C, tmp2); 
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) { 
    for (int i=0; i<n; i++) 
       E[i] = D[i] + (A[i] + B[i]) * C[i];     
} 

// compute E = D + (A + B) * C 
fused(n, A, B, C, D, E);

Program 1

Program 2

(Note: an answer probably needs 
to state its assumptions.)
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More thought questions

void add(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] + B[i];     
} 

void mul(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] * B[i];     
} 

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 
add(n, A, B, tmp1); 
mul(n, tmp1, C, tmp2); 
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) { 
    for (int i=0; i<n; i++) 
       E[i] = D[i] + (A[i] + B[i]) * C[i];     
} 

// compute E = D + (A + B) * C 
fused(n, A, B, C, D, E);

Program 1

Program 2

Which code structuring style 
would you rather write? 

Consider running either of these 
programs: would support for 
hardware multi-threading help 
performance?


