
Visual Computing Systems
Stanford CS348K : Fall 2018

Lecture 1:

Course Introduction +
Review of Throughput Hardware Concepts

 Stanford CS348K, Fall 2018

Hello from the course staff

Your instructor (me) Your CA!

Prof. Kayvon Alex Poms

 Stanford CS348K, Fall 2018

Visual Computing Systems
— Some History

(why I get so excited about this topic)

 Stanford CS348K, Fall 2018

Ivan Sutherland’s Sketchpad on MIT TX-2 (1962)

 Stanford CS348K, Fall 2018

The frame buffer 16 2K shift registers (640 x 486 x 8 bits)
Shoup’s SuperPaint (PARC 1972-73)

 Stanford CS348K, Fall 2018

The frame buffer
Shoup’s SuperPaint (PARC 1972-73)

16 2K shift registers (640 x 486 x 8 bits)

 Stanford CS348K, Fall 2018

Xerox Alto (1973)

TI 74181 ALUBravo (WYSIWYG)

 Stanford CS348K, Fall 2018

UNC Pixel Planes (1981), computation-enhanced frame buffer

 Stanford CS348K, Fall 2018Figure 2: Photograph of the Geometry Engine.

Jim Clark’s Geometry Engine
(1982)

ASIC for geometric transforms
used in real-time graphics

 Stanford CS348K, Fall 2018

NVIDIA Titan X Pascal GPU (2017)

~ 12 TFLOPs fp32
Similar to ASCI Q (top US supercomputer circa 2002)

 Stanford CS348K, Fall 2018

Far Cry 5

 Stanford CS348K, Fall 2018

Digital photography: major driver of
compute capability of modern smartphones

High dynamic range (HDR) photography

Portrait mode
(simulate effects of large aperture DSLR,

or even physically impossible lens)

 Stanford CS348K, Fall 2018

Modern smartphones utilize multiple processing
units to quickly generate high-quality images

Image Credit: TechInsights Inc.

Apple A11 Bionic *

* Disclaimer: blocks estimated by TechInsights,
not an official Apple reference.

 Stanford CS348K, Fall 2018

On every vehicle: analyzing images for robot navigation

 Stanford CS348K, Fall 2018

Datacenter-scale applications

Google TPU pods

Image Credit: TechInsights Inc.

 Stanford CS348K, Fall 2018

Youtube Transcode, stream, analyze…

https://www.youtube.com/watch?v=kJQP7kiw5Fk

 Stanford CS348K, Fall 2018

Facebook live video

 Stanford CS348K, Fall 2018

Unique visual experiences

Intel “True View”: 38 cameras in stadium used to reconstruct 3D,
system renders new view from quarterback’s eyes

https://www.youtube.com/watch?v=Q4L6Ffkcjz8

 Stanford CS348K, Fall 2018

Snap Spectacles

 Stanford CS348K, Fall 2018

What is this course about?

Accelerator hardware architecture?

Graphics/vision/digital photography algorithms?

Programming languages?

 Stanford CS348K, Fall 2018

What we will be learning about

Visual Computing Workloads
Algorithms for image/video processing,
DNN evaluation, data compression, etc.

Table 4. Results on NYUDv2. RGBD is early-fusion of the
RGB and depth channels at the input. HHA is the depth embed-
ding of [15] as horizontal disparity, height above ground, and
the angle of the local surface normal with the inferred gravity
direction. RGB-HHA is the jointly trained late fusion model
that sums RGB and HHA predictions.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

Gupta et al. [15] 60.3 - 28.6 47.0
FCN-32s RGB 60.0 42.2 29.2 43.9

FCN-32s RGBD 61.5 42.4 30.5 45.5
FCN-32s HHA 57.1 35.2 24.2 40.4

FCN-32s RGB-HHA 64.3 44.9 32.8 48.0
FCN-16s RGB-HHA 65.4 46.1 34.0 49.5

NYUDv2 [33] is an RGB-D dataset collected using the
Microsoft Kinect. It has 1449 RGB-D images, with pixel-
wise labels that have been coalesced into a 40 class seman-
tic segmentation task by Gupta et al. [14]. We report results
on the standard split of 795 training images and 654 testing
images. (Note: all model selection is performed on PAS-
CAL 2011 val.) Table 4 gives the performance of our model
in several variations. First we train our unmodified coarse
model (FCN-32s) on RGB images. To add depth informa-
tion, we train on a model upgraded to take four-channel
RGB-D input (early fusion). This provides little benefit,
perhaps due to the difficultly of propagating meaningful
gradients all the way through the model. Following the suc-
cess of Gupta et al. [15], we try the three-dimensional HHA
encoding of depth, training nets on just this information, as
well as a “late fusion” of RGB and HHA where the predic-
tions from both nets are summed at the final layer, and the
resulting two-stream net is learned end-to-end. Finally we
upgrade this late fusion net to a 16-stride version.

SIFT Flow is a dataset of 2,688 images with pixel labels
for 33 semantic categories (“bridge”, “mountain”, “sun”),
as well as three geometric categories (“horizontal”, “verti-
cal”, and “sky”). An FCN can naturally learn a joint repre-
sentation that simultaneously predicts both types of labels.
We learn a two-headed version of FCN-16s with seman-
tic and geometric prediction layers and losses. The learned
model performs as well on both tasks as two independently
trained models, while learning and inference are essentially
as fast as each independent model by itself. The results in
Table 5, computed on the standard split into 2,488 training
and 200 test images,9 show state-of-the-art performance on
both tasks.

9Three of the SIFT Flow categories are not present in the test set. We
made predictions across all 33 categories, but only included categories ac-
tually present in the test set in our evaluation. (An earlier version of this pa-
per reported a lower mean IU, which included all categories either present
or predicted in the evaluation.)

Table 5. Results on SIFT Flow9 with class segmentation
(center) and geometric segmentation (right). Tighe [36] is
a non-parametric transfer method. Tighe 1 is an exemplar
SVM while 2 is SVM + MRF. Farabet is a multi-scale con-
vnet trained on class-balanced samples (1) or natural frequency
samples (2). Pinheiro is a multi-scale, recurrent convnet, de-
noted RCNN3 (�3). The metric for geometry is pixel accuracy.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

geom.
acc.

Liu et al. [25] 76.7 - - - -
Tighe et al. [36] - - - - 90.8

Tighe et al. [37] 1 75.6 41.1 - - -
Tighe et al. [37] 2 78.6 39.2 - - -
Farabet et al. [9] 1 72.3 50.8 - - -
Farabet et al. [9] 2 78.5 29.6 - - -
Pinheiro et al. [31] 77.7 29.8 - - -

FCN-16s 85.2 51.7 39.5 76.1 94.3

FCN-8s SDS [17] Ground Truth Image

Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan et al. [17]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row),
and robustness to occluders (third row). The fourth row shows a
failure case: the net sees lifejackets in a boat as people.

6. Conclusion

Fully convolutional networks are a rich class of mod-
els, of which modern classification convnets are a spe-
cial case. Recognizing this, extending these classification
nets to segmentation, and improving the architecture with
multi-resolution layer combinations dramatically improves
the state-of-the-art, while simultaneously simplifying and
speeding up learning and inference.

Acknowledgements This work was supported in part

If you don’t understand key
workload characteristics,

how can you design a good
system?

 Stanford CS348K, Fall 2018

What we will be learning about

If must understand key
constraints of modern hardware

to create algorithms that are well
suited to run on it efficiently.

Modern Hardware
Organization

High-throughput hardware designs
(parallel, heterogeneous, and specialized)

fundamental constraints like area and power

 Stanford CS348K, Fall 2018

What we will be learning about

Good programming abstractions enable
productive development of applications,

while also providing system implementors
flexibility to explore highly efficient

implementations

Programming Model
Design

Choice of programming abstractions,
level of abstraction issues,

domain-specific vs. general purpose, etc.

Halide

 Stanford CS348K, Fall 2018

This course is about architecting efficient
and scalable systems…
It is about the process of understanding the fundamental
structure of problems in the visual computing domain, and
then leveraging that understanding to…

To design more efficient and more robust algorithms

To build the most efficient hardware to run these algorithms

To design programming systems to make developing new
applications simpler, more productive, and highly performant

 Stanford CS348K, Fall 2018

Course Logistics

 Stanford CS348K, Fall 2018

Logistics
▪ Course web site:

- http://cs348k.stanford.edu
- My goal is to post lecture slides the night before class

▪ All announcements will go out via Piazza (not via Canvas)
- https://piazza.com/class/jlwy0xxpof55v

http://cs348k.stanford.edu
https://piazza.com/class/jlwy0xxpof55v

 Stanford CS348K, Fall 2018

Expectations of you
▪ 35% participation

- There will be ~1 assigned paper reading per class
- Everyone is expected to come to class and participate in discussions on readings
- You are encouraged discuss papers and lectures on the course site

▪ 20% a multi-part programming assignments (implement and optimize a
simple HDR photography processing pipeline)

▪ 10% a take-home written assignment (to reinforce understanding of course
topics)

▪ 35% self-selected final project (teams of two)
- I suggest you start thinking about projects now (can be teams of up to two)

 Stanford CS348K, Fall 2018

Review (or crash course):

key principles of modern
throughput computing hardware

 Stanford CS348K, Fall 2018

Let’s crack open a modern smartphone

Multi-core GPU
(3D graphics,

OpenCL data-parallel compute)

Display engine
(compresses pixels for

transfer to high-res screen)

Image Signal Processor
ASIC for processing camera

sensor pixels

Multi-core ARM CPU
4 “big cores” + 4 “little cores”

Video encode/decode ASIC

“Hexagon”
Programmable DSP
data-parallel multi-media

processing

Google Pixel 2 Phone:
Qualcomm Snapdragon 835 SoC + Google Visual Pixel Core

Visual Pixel Core
Programmable image

processor and DNN accelerator

 Stanford CS348K, Fall 2018

Three things to know
1. What are these three hardware design strategies, and what

problem/goals do they address?
- Muti-core processing
- SIMD processing
- Hardware multi-threading

2. What is the motivation for specialization via…
- Multiple types of processors (e.g., CPUs, GPUs)
- Custom hardware units (ASIC)

3. Why is memory bandwidth a major constraint (often the most
important constraint) when mapping applications to modern
computer systems?

 Stanford CS348K, Fall 2018

Multi-core processing

 Stanford CS348K, Fall 2018

Review: what does a processor do?
It runs programs!

Processor executes instruction
referenced by the program counter
(PC)
(executing the instruction will modify machine
state: contents of registers, memory, CPU
state, etc.)

Move to next instruction …

Then execute it…

And so on…

PC

_main:
100000f10: pushq %rbp
100000f11: movq %rsp, %rbp
100000f14: subq $32, %rsp
100000f18: movl $0, -4(%rbp)
100000f1f: movl %edi, -8(%rbp)
100000f22: movq %rsi, -16(%rbp)
100000f26: movl $1, -20(%rbp)
100000f2d: movl $0, -24(%rbp)
100000f34: cmpl $10, -24(%rbp)
100000f38: jge 23 <_main+0x45>
100000f3e: movl -20(%rbp), %eax
100000f41: addl -20(%rbp), %eax
100000f44: movl %eax, -20(%rbp)
100000f47: movl -24(%rbp), %eax
100000f4a: addl $1, %eax
100000f4d: movl %eax, -24(%rbp)
100000f50: jmp -33 <_main+0x24>
100000f55: leaq 58(%rip), %rdi
100000f5c: movl -20(%rbp), %esi
100000f5f: movb $0, %al
100000f61: callq 14
100000f66: xorl %esi, %esi
100000f68: movl %eax, -28(%rbp)
100000f6b: movl %esi, %eax
100000f6d: addq $32, %rsp
100000f71: popq %rbp
100000f72: retq

 Stanford CS348K, Fall 2018

Executing an instruction stream

x[i]

Fetch/
Decode

Execution
Context

ALU
(Execute)

ld r0, addr[r1]
mul r1, r0, r0
mul r1, r1, r0
...
...
...
...
...
...
st addr[r2], r0

result[i]

 Stanford CS348K, Fall 2018

Fetch/
Decode

Execution
Context

ALU
(Execute)

PC

My very simple processor: executes one instruction per clock

ld r0, addr[r1]
mul r1, r0, r0
mul r1, r1, r0
...
...
...
...
...
...
st addr[r2], r0

Executing an instruction stream

result[i]

x[i]

 Stanford CS348K, Fall 2018

Fetch/
Decode

Execution
Context

ALU
(Execute)

PC

My very simple processor: executes one instruction per clock

ld r0, addr[r1]
mul r1, r0, r0
mul r1, r1, r0
...
...
...
...
...
...
st addr[r2], r0

result[i]

Executing an instruction stream

x[i]

 Stanford CS348K, Fall 2018

Fetch/
Decode

Execution
Context

ALU
(Execute)

PC

My very simple processor: executes one instruction per clock

ld r0, addr[r1]
mul r1, r0, r0
mul r1, r1, r0
...
...
...
...
...
...
st addr[r2], r0

result[i]

Executing an instruction stream

x[i]

 Stanford CS348K, Fall 2018

Quick aside:
Instruction-level parallelism and

superscalar execution

 Stanford CS348K, Fall 2018

Instruction level parallelism (ILP) example
a = x*x + y*y + z*z

// assume r0=x, r1=y, r2=z

mul r0, r0, r0
mul r1, r1, r1
mul r2, r2, r2
add r0, r0, r1
add r3, r0, r2

// now r3 stores value of program variable ‘a’

Consider the following program:

This program has five instructions, so it will take five clocks to execute, correct?
Can we do better?

 Stanford CS348K, Fall 2018

ILP example
a = x*x + y*y + z*z

x

+

a

+

ILP = 3

ILP = 1

ILP = 1

x

*

y y

*

z z

*

 Stanford CS348K, Fall 2018

Superscalar execution
a = x*x + y*y + z*z

// assume r0=x, r1=y, r2=z

mul r0, r0, r0
mul r1, r1, r1
mul r2, r2, r2
add r0, r0, r1
add r3, r0, r2

// r3 stores value of variable ‘a’

Superscalar execution: processor automatically finds independent instructions in an
instruction sequence and executes them in parallel on multiple execution units!

1.
2.
3.
4.
5.

In this example: instructions 1, 2, and 3 can be executed in parallel
(on a superscalar processor that determines that the lack of dependencies exists)

But instruction 4 must come after instructions 1 and 2

And instruction 5 must come after instruction 4

 Stanford CS348K, Fall 2018

Superscalar execution

void sinx(int N, int terms, float x)
{
 float value = x;
 float numer = x * x * x;
 int denom = 6; // 3!
 int sign = -1;

 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom;
 numer *= x * x;
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }

 return value;
}

Program: computes sin of input x via Taylor expansion

Execution
Context

My single core, superscalar processor:
executes up to two instructions per clock

from a single instruction stream.

Fetch/
Decode

Exec
1

Fetch/
Decode

Exec
2

Independent operations in
instruction stream

(They are detected by the processor
at run-time and may be executed in
parallel on execution units 1 and 2)

 Stanford CS348K, Fall 2018

Now consider a program that computes
the sine of many numbers…

 Stanford CS348K, Fall 2018

Example program

void sinx(int N, int terms, float* x, float* result)
{
 for (int i=0; i<N; i++)
 {
 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;

 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom;
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }

 result[i] = value;
 }
}

Compute sin(x) using Taylor expansion: sin(x) = x - x3/3! + x5/5! - x7/7! + ...
for each element of an array of N floating-point numbers

 Stanford CS348K, Fall 2018

Multi-core: process multiple instruction streams in parallel

Sixteen cores, sixteen simultaneous instruction streams

 Stanford CS348K, Fall 2018

Core 1

Multi-core examples

Intel “Skylake” Core i7 quad-core CPU
(2015)

NVIDIA GP104 (GTX 1080) GPU
20 replicated (“SM”) cores

(2016)

Core 4

Shared L3 cache

Core 2

Core 3

 Stanford CS348K, Fall 2018

More multi-core examples

Intel Xeon Phi “Knights Landing “ 76-core CPU
(2015)

Apple A11 Bionic CPU
Two “big” cores

Four “small cores”
(2017)

A9 image credit: Chipworks (obtained via Anandtech)
http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3

Core 1 Core 2

 Stanford CS348K, Fall 2018

SIMD processing

 Stanford CS348K, Fall 2018

Add ALUs to increase compute capability

Idea #2:
Amortize cost/complexity of managing an
instruction stream across many ALUs

SIMD processing
Single instruction, multiple data

Same instruction broadcast to all ALUs
Executed in parallel on all ALUs

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context

 Stanford CS348K, Fall 2018

Scalar program

ld r0, addr[r1]
mul r1, r0, r0
mul r1, r1, r0
...
...
...
...
...
...
st addr[r2], r0

void sinx(int N, int terms, float* x, float* result)
{
 for (int i=0; i<N; i++)
 {

 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;

 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom;
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }

 result[i] = value;
 }
}

Original compiled program:

Processes one array element using scalar
instructions on scalar registers (e.g., 32-bit floats)

 Stanford CS348K, Fall 2018

Vector program (using AVX intrinsics)
#include <immintrin.h>
void sinx(int N, int terms, float* x, float* sinx)
{
 float three_fact = 6; // 3!
 for (int i=0; i<N; i+=8)
 {
 __m256 origx = _mm256_load_ps(&x[i]);

 __m256 value = origx;
 __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx));
 __m256 denom = _mm256_broadcast_ss(&three_fact);
 int sign = -1;

 for (int j=1; j<=terms; j++)
 {
 // value += sign * numer / denom
 __m256 tmp =
 _mm256_div_ps(_mm256_mul_ps(_mm256_broadcast_ss(sign),numer),denom);
 value = _mm256_add_ps(value, tmp);

 numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx));
 denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3)));
 sign *= -1;

 }
 _mm256_store_ps(&sinx[i], value);
 }
}

vloadps xmm0, addr[r1]
vmulps xmm1, xmm0, xmm0
vmulps xmm1, xmm1, xmm0
...
...
...
...
...
...
vstoreps addr[xmm2], xmm0

Compiled program:

Processes eight array elements
simultaneously using vector
instructions on 256-bit vector registers

 Stanford CS348K, Fall 2018

16 SIMD cores: 128 elements in parallel

16 cores, 128 ALUs, 16 simultaneous instruction streams

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 Stanford CS348K, Fall 2018

Data-parallel expression of program
void sinx(int N, int terms, float* x, float* result)
{
 // declare independent loop iterations
 forall (int i from 0 to N-1)
 {
 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;

 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }

 result[i] = value;
 }
}

Semantics: loop iterations are
“independent”

Q. Why did I say independent and not
parallel?

Q. How does this abstraction facilitate
automatic generation of both multi-
core parallel code, and vector
instructions to make use of SIMD
processing capabilities within a core?

(in Kayvon’s fictitious data-parallel language)

 Stanford CS348K, Fall 2018

What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for
each element in input array ‘A’, producing
output into the array ‘result’)

 Stanford CS348K, Fall 2018

What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

T T T F FF F F if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for
each element in input array ‘A’, producing
output into the array ‘result’)

 Stanford CS348K, Fall 2018

Mask (discard) output of ALU

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional
code>

T T T F FF F F

Not all ALUs do useful work!

Worst case: 1/8 peak performance

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for
each element in input array ‘A’, producing
output into the array ‘result’)

 Stanford CS348K, Fall 2018

After branch: continue at full performance

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

T T T F FF F F
float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for
each element in input array ‘A’, producing
output into the array ‘result’)

 Stanford CS348K, Fall 2018

Example: eight-core Intel Xeon E5-1660 v4

8 cores
8 SIMD ALUs per core
(AVX2 instructions)

490 GFLOPs (@3.2 GHz)
(140 Watts)

* Showing only AVX math units, and fetch/decode unit for AVX (additional capability for integer math)

 Stanford CS348K, Fall 2018

Example: NVIDIA GTX 1080 GPU

20 cores (“SMs”)
128 SIMD ALUs per core (@1.6 GHz) = 8.1 TFLOPs (180 Watts)

 Stanford CS348K, Fall 2018

Part 2:
accessing memory

Memory

 Stanford CS348K, Fall 2018

Hardware multi-threading

 Stanford CS348K, Fall 2018

Terminology
▪ Memory latency

- The amount of time for a memory request (e.g., load, store) from a
processor to be serviced by the memory system

- Example: 100 cycles, 100 nsec

▪ Memory bandwidth
- The rate at which the memory system can provide data to a processor

- Example: 20 GB/s

 Stanford CS348K, Fall 2018

Stalls
▪ A processor “stalls” when it cannot run the next instruction in

an instruction stream because of a dependency on a previous
instruction.

▪ Accessing memory is a major source of stalls
ld r0 mem[r2]
ld r1 mem[r3]
add r0, r0, r1

▪ Memory access times ~ 100’s of cycles
- Memory “access time” is a measure of latency

Dependency: cannot execute ‘add’ instruction until data at mem[r2] and
mem[r3] have been loaded from memory

 Stanford CS348K, Fall 2018

38 GB/sec
L3 cache

(8 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

. . .

Memory
DDR4 DRAM

(Gigabytes)

Core 1

Core N

Review: why do modern processors have caches?

 Stanford CS348K, Fall 2018

Caches reduce length of stalls (reduce latency)
Processors run efficiently when data is resident in caches

Caches reduce memory access latency *

38 GB/sec
L3 cache

(8 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

. . .

Memory
DDR4 DRAM

(Gigabytes)

Core 1

Core N

* Caches also provide high bandwidth data transfer to CPU

 Stanford CS348K, Fall 2018

Prefetching reduces stalls (hides latency)
▪ All modern CPUs have logic for prefetching data into caches

- Dynamically analyze program’s access patterns, predict what it will access soon

▪ Reduces stalls since data is resident in cache when accessed

predict value of r2, initiate load
predict value of r3, initiate load
...
...
...
...
...
...
ld r0 mem[r2]
ld r1 mem[r3]
add r0, r0, r1

data arrives in cache

data arrives in cache

Note: Prefetching can also reduce
performance if the guess is wrong
(hogs bandwidth, pollutes caches)

(more detail later in course)

These loads are cache hits

 Stanford CS348K, Fall 2018

Multi-threading reduces stalls
▪ Idea: interleave processing of multiple threads on the same

core to hide stalls

▪ Like prefetching, multi-threading is a latency hiding, not a
latency reducing technique

 Stanford CS348K, Fall 2018

Hiding stalls with multi-threading

Time

Thread 1
Elements 0 … 7

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 Core (1 thread)

Exec Ctx

 Stanford CS348K, Fall 2018

Hiding stalls with multi-threading

Time

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

1 2 3 4

Thread 1
Elements 0 … 7

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

 Stanford CS348K, Fall 2018

Hiding stalls with multi-threading

Time

1 2 3 4

Stall

Runnable

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

 Stanford CS348K, Fall 2018

Hiding stalls with multi-threading

Time

1 2 3 4

Stall

Runnable

Stall

Runnable

Done!

Stall

Runnable

Stall

Runnable

Done!

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

 Stanford CS348K, Fall 2018

Throughput computing trade-off

Time

Stall

Runnable

Done!

Key idea of throughput-oriented systems:
Potentially increase time to complete work by any
one any one thread, in order to increase overall
system throughput when running multiple threads.

During this time, this thread is runnable, but it is not being executed
by the processor. (The core is running some other thread.)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

 Stanford CS348K, Fall 2018

Kayvon’s fictitious multi-core chip
16 cores

8 SIMD ALUs per core

(128 total)

4 threads per core

16 simultaneous instruction
streams

64 total concurrent instruction
streams

512 independent pieces of work
are needed to run chip with
maximal latency hiding ability

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 Stanford CS348K, Fall 2018

= SIMD function unit,
 control shared across 32 units
(1 MUL-ADD per clock)

“Shared” memory
(96 KB)

Execution contexts (registers)
(256 KB)

▪ Instructions operate on 32 pieces of
data at a time (instruction streams
called “warps”).

▪ Think: warp = thread issuing 32-wide
vector instructions

▪ Different instructions from up to four
warps can be executed simultaneously
(simultaneous multi-threading)

▪ Up to 64 warps are interleaved on the
SM (interleaved multi-threading)

▪ Over 2,048 elements can be processed
concurrently by a core

NVIDIA GTX 1080 core (“SM”)

GPUs: extreme throughput-oriented processors

Source: NVIDIA Pascal Tuning Guide

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

 Stanford CS348K, Fall 2018

NVIDIA GTX 1080

There are 20 SM cores on the GTX 1080:
That’s 40,960 pieces of data being processed concurrently to get maximal latency hiding!

 Stanford CS348K, Fall 2018

Another example:
for review and to check your understanding

(if you understand the following sequence you understand this lecture)

 Stanford CS348K, Fall 2018

Running code on a simple processor

void sinx(int N, int terms, float* x, float* result)
{
 for (int i=0; i<N; i++)
 {
 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;

 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom;
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }

 result[i] = value;
 }
}

My very simple program:
compute sin(x) using Taylor expansion

Fetch/
Decode

Execution
Context

ALU
(Execute)

My very simple processor:
completes one instruction per clock

 Stanford CS348K, Fall 2018

void sinx(int N, int terms, float* x, float* result)
{
 for (int i=0; i<N; i++)
 {
 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;

 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom;
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }

 result[i] = value;
 }
}

Review: superscalar execution
Unmodified program

Execution
Context

My single core, superscalar processor:
executes up to two instructions per clock

from a single instruction stream.

Fetch/
Decode

Exec
1

Fetch/
Decode

Exec
2

Independent operations in
instruction stream

(They are detected by the processor
at run-time and may be executed in
parallel on execution units 1 and 2)

 Stanford CS348K, Fall 2018

typedef struct {
 int N;
 int terms;
 float* x;
 float* result;
} my_args;

void parallel_sinx(int N, int terms, float* x, float* result) {
 pthread_t thread_id;
 my_args args;

 args.N = N/2;
 args.terms = terms;
 args.x = x;
 args.result = result;

 // launch thread
 pthread_create(&thread_id, NULL, my_thread_start, &args);
 sinx(N - args.N, terms, x + args.N, result + args.N); // do work
 pthread_join(thread_id, NULL);
}

void my_thread_start(void* thread_arg) {
 my_args* thread_args = (my_args*)thread_arg;
 sinx(args->N, args->terms, args->x, args->result); // do work
}

Review: multi-core execution (two cores)
Modify program to create two threads of control (two instruction streams)

My dual-core processor:
executes one instruction per clock

from an instruction stream on each core.

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

 Stanford CS348K, Fall 2018

Review: multi-core + superscalar execution
Modify program to create two threads of control (two instruction streams)

Execution
Context

typedef struct {
 int N;
 int terms;
 float* x;
 float* result;
} my_args;

void parallel_sinx(int N, int terms, float* x, float* result) {
 pthread_t thread_id;
 my_args args;

 args.N = N/2;
 args.terms = terms;
 args.x = x;
 args.result = result;

 // launch thread
 pthread_create(&thread_id, NULL, my_thread_start, &args);
 sinx(N - args.N, terms, x + args.N, result + args.N); // do work
 pthread_join(thread_id, NULL);
}

void my_thread_start(void* thread_arg) {
 my_args* thread_args = (my_args*)thread_arg;
 sinx(args->N, args->terms, args->x, args->result); // do work
}

Fetch/
Decode

Exec
1

Fetch/
Decode

Exec
2

Execution
Context

Fetch/
Decode

Exec
1

Fetch/
Decode

Exec
2

My superscalar dual-core processor:
executes up to two instructions per clock
from an instruction stream on each core.

 Stanford CS348K, Fall 2018

Review: multi-core (four cores)
Modify program to create many threads of control:
(code written in Kayvon’s fictitious data-parallel language)

My quad-core processor:
executes one instruction per clock

from an instruction stream on each core.

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

void sinx(int N, int terms, float* x, float* result)
{
 // declare independent loop iterations
 forall (int i from 0 to N-1)
 {

 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;

 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }

 result[i] = value;
 }
}

 Stanford CS348K, Fall 2018

Review: four, 8-wide SIMD cores
Observation: program must execute many iterations of the same loop body.
Optimization: share instruction stream across execution of multiple iterations (single instruction
multiple data = SIMD) My SIMD quad-core processor:

executes one 8-wide SIMD instruction per clock
from an instruction stream on each core.

Fetch/
Decode

Execution
Context

void sinx(int N, int terms, float* x, float* result)
{
 // declare independent loop iterations
 forall (int i from 0 to N-1)
 {

 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;

 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }

 result[i] = value;
 }
}

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

 Stanford CS348K, Fall 2018

Review: four SIMD, multi-threaded cores
Observation: memory operations have very long latency
Solution: hide latency of loading data for one iteration by
executing arithmetic instructions from other iterations
void sinx(int N, int terms, float* x, float* result)
{
 // declare independent loop iterations
 forall (int i from 0 to N-1)
 {

 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;

 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }

 result[i] = value;
 }
}

Fetch/
DecodeMemory load

Memory store

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

My multi-threaded, SIMD quad-core processor:
executes one SIMD instruction per clock

from one instruction stream on each core. But
can switch to processing the other instruction

stream when faced with a stall.

 Stanford CS348K, Fall 2018

Summary: four superscalar, SIMD, multi-threaded cores

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

My multi-threaded, superscalar, SIMD quad-core processor:
executes up to two instructions per clock from one instruction stream on each core

(in this example: one SIMD instruction + one scalar instruction).
Processor can switch to execute the other instruction stream when faced with stall.

 Stanford CS348K, Fall 2018

Connecting it all together
Kayvon’s simple quad-core processor:

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

L3 Cache
Memory

Controller

Memory Bus
(to DRAM)

On-chip
interconnect

Four cores, two-way multi-threading per core (max eight threads active on chip at once), up to two
instructions per clock per core (one of those instructions is 8-wide SIMD)

 Stanford CS348K, Fall 2018

Thought experiment
▪ You write a C application that spawns two pthreads

▪ The application runs on the processor shown below
- Two cores, two-execution contexts per core, up to instructions per clock, one

instruction is an 8-wide SIMD instruction.

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

▪ Question: “who” is responsible for mapping your pthreads to the
processor’s thread execution contexts?
Answer: the operating system

▪ Question: If you were the OS, how would to assign the two threads to
the four available execution contexts?

▪ Another question: How would you
assign threads to execution contexts
if your C program spawned five
pthreads?

 Stanford CS348K, Fall 2018

Another thought experiment
Task: element-wise multiplication of two vectors A and B

Assume vectors contain millions of elements

- Load input A[i]
- Load input B[i]
- Compute A[i] × B[i]
- Store result into C[i]

=

A

B

C

×

<1% GPU efficiency… but 4.2x faster than eight-core CPU!
(3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus will exhibit ~3%
efficiency on this computation)

Three memory operations (12 bytes) for every MUL
NVIDIA GTX 1080 GPU can do 2560 MULs per clock (@ 1.6 GHz)
Need ~50 TB/sec of bandwidth to keep functional units busy (only have 320 GB/sec)

 Stanford CS348K, Fall 2018

Bandwidth limited!

Bandwidth limited!
If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Bandwidth is a critical resource

Overcoming bandwidth limits are a common challenge for
application developers on throughput-optimized systems.

 Stanford CS348K, Fall 2018

Hardware specialization

 Stanford CS348K, Fall 2018

Why does energy efficiency matter?
▪ General mobile processing rule: the longer a task runs the less power it can use

- Processor’s power consumption is limited by heat generated (efficiency is
required for more than just maximizing battery life)

Po
we

r

Time

Electrical limit: max power that can be supplied to chip

Die temp: (junction temp -- Tj): chip becomes unreliable above this temp
(chip can run at high power for short period of time until chip heats to Tj)

Case temp: mobile device gets too hot for user to comfortably hold
(chip is at suitable operating temp, but heat is dissipating into case)

Battery life: chip and case are cool, but want to reduce power
consumption to sustain long battery life for given task

Slide credit: adopted from original slide from M. Shebanow: HPG 2013 keynote

iPhone 6 battery: 7 watt-hours
9.7in iPad Pro battery: 28 watt-hours
15in Macbook Pro: 99 watt-hours

 Stanford CS348K, Fall 2018

Efficiency benefits of compute specialization
▪ Rules of thumb: compared to high-quality C code on CPU...

▪ Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

▪ Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt

- Assuming code is compute bound and
and is not floating-point math

[Source: Chung et al. 2010 , Dally 08] [Figure credit Eric Chung]

 Stanford CS348K, Fall 2018

Hardware specialization increases efficiency

[Chung et al. MICRO 2010]
lg2(N) (data set size)

FPGA
GPUs

FPGA
GPUs

lg2(N) (data set size)

ASIC delivers same performance
as one CPU core with ~ 1/1000th
the chip area.

GPU cores: ~ 5-7 times more area
efficient than CPU cores.

ASIC delivers same performance
as one CPU core with only ~
1/100th the power.

 Stanford CS348K, Fall 2018

Modern systems use specialized HW for…
▪ Image/video encode/decode (e.g., H.264, JPG)

▪ Audio recording/playback

▪ Voice “wake up” (e.g., Ok Google)

▪ Camera “RAW” processing: processing data acquired by image
sensor into images that are pleasing to humans

▪ Many 3D graphics tasks (rasterization, texture mapping,
occlusion using the Z-buffer)

▪ Deep network evaluation (Google’s Tensor Processing Unit,
Apple Neural engine, etc.)

 Stanford CS348K, Fall 2018

Middle ground: programmable
signal processor (Qualcomm Hexagon)

▪ Originally used for audio/LTE support on Qualcomm SoC’s
▪ Multi-threaded, VLIW DSP
▪ Third major programmable unit on modern Qualcomm SoCs

- Multi-core CPU
- Multi-core GPU
- Hexagon DSP

7
Qualcomm Technologies, Inc. All Rights Reserved

Instruction Unit

VLIW: Area & power efficient multi-issue

Data Unit
(Load/
Store/
ALU)

Data Unit
(Load/
Store/
ALU)

Execution
Unit

(64-bit
Vector)

Execution
Unit

(64-bit
Vector)

Data Cache

L2
Cache
/ TCM

Instruction
Cache

• Dual 64-bit
load/store
units

• Also 32-bit
ALU

Variable sized
instruction packets
(1 to 4 instructions
per Packet)

• Dual 64-bit execution units
• Standard 8/16/32/64bit data

types
• SIMD vectorized MPY / ALU

/ SHIFT, Permute, BitOps
• Up to 8 16b MAC/cycle
• 2 SP FMA/cycle

Register File
Register File

Register File/Thread

• Unified 32x32bit
General Register
File is best for
compiler.

• No separate Address
or Accum Regs

• Per-Thread

Device
DDR

Memory

7
Qualcomm Technologies, Inc. All Rights Reserved

Instruction Unit

VLIW: Area & power efficient multi-issue

Data Unit
(Load/
Store/
ALU)

Data Unit
(Load/
Store/
ALU)

Execution
Unit

(64-bit
Vector)

Execution
Unit

(64-bit
Vector)

Data Cache

L2
Cache
/ TCM

Instruction
Cache

• Dual 64-bit
load/store
units

• Also 32-bit
ALU

Variable sized
instruction packets
(1 to 4 instructions
per Packet)

• Dual 64-bit execution units
• Standard 8/16/32/64bit data

types
• SIMD vectorized MPY / ALU

/ SHIFT, Permute, BitOps
• Up to 8 16b MAC/cycle
• 2 SP FMA/cycle

Register File
Register File

Register File/Thread

• Unified 32x32bit
General Register
File is best for
compiler.

• No separate Address
or Accum Regs

• Per-Thread

Device
DDR

Memory

 Stanford CS348K, Fall 2018

Example: Google’s Pixel Visual Core
Programmable “image processing unit” (IPU)

▪ Each core = 16x16 grid of 16 bit
mul-add ALUs

▪ Google’s HotChip 2018 claims:
~10-20x more efficient than
GPU at image processing tasks

 Stanford CS348K, Fall 2018

Summary: choosing the right tool for the job

Energy-optimized CPU
Throughput-oriented

processor (GPU)

~10X more efficient

Credit Pat Hanrahan for this taxonomy

ASIC

~100-1000X
more efficient

Video encode/decode,
Audio playback, simple camera

RAW, neural computations

Programmable DSP

7
Qualcomm Technologies, Inc. All Rights Reserved

Instruction Unit

VLIW: Area & power efficient multi-issue

Data Unit
(Load/
Store/
ALU)

Data Unit
(Load/
Store/
ALU)

Execution
Unit

(64-bit
Vector)

Execution
Unit

(64-bit
Vector)

Data Cache

L2
Cache
/ TCM

Instruction
Cache

• Dual 64-bit
load/store
units

• Also 32-bit
ALU

Variable sized
instruction packets
(1 to 4 instructions
per Packet)

• Dual 64-bit execution units
• Standard 8/16/32/64bit data

types
• SIMD vectorized MPY / ALU

/ SHIFT, Permute, BitOps
• Up to 8 16b MAC/cycle
• 2 SP FMA/cycle

Register File
Register File

Register File/Thread

• Unified 32x32bit
General Register
File is best for
compiler.

• No separate Address
or Accum Regs

• Per-Thread

Device
DDR

Memory

FPGA/Future
reconfigurable HW

~100X???
(jury still out)

Easiest to program Difficult to program
(making it easier is

active area of research)

Not programmable +
costs 10-100’s millions
of dollars to design /

verify / create

Google’s Pixel
Visual Core

 Stanford CS348K, Fall 2018

Data movement has high energy cost
▪ Rule of thumb in mobile system design: always seek to reduce amount of

data transferred from memory
- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).

Now, we wish to reduce communication to reduce energy consumption

▪ “Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

▪ Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt

(remember phone is also running CPU, display, radios, etc.)
- iPhone 6 battery: ~7 watt-hours (note: my Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values,
rather than storing and reloading
them, is a better answer when
optimizing code for energy efficiency!

http://www.displaymate.com/iPad_ShootOut_1.htm

 Stanford CS348K, Fall 2018

Welcome to cs348K!
▪ Make sure you are signed up on Piazza so you get

announcements

▪ See website for tonight’s reading

 Stanford CS348K, Fall 2018

Extra slides:
(More review)

 Stanford CS348K, Fall 2018

Which program performs better?

void add(int n, float* A, float* B, float* C) {
 for (int i=0; i<n; i++)
 C[i] = A[i] + B[i];
}

void mul(int n, float* A, float* B, float* C) {
 for (int i=0; i<n; i++)
 C[i] = A[i] * B[i];
}

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)
add(n, A, B, tmp1);
mul(n, tmp1, C, tmp2);
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) {
 for (int i=0; i<n; i++)
 E[i] = D[i] + (A[i] + B[i]) * C[i];
}

// compute E = D + (A + B) * C
fused(n, A, B, C, D, E);

Program 1

Program 2

(Note: an answer probably needs
to state its assumptions.)

 Stanford CS348K, Fall 2018

More thought questions

void add(int n, float* A, float* B, float* C) {
 for (int i=0; i<n; i++)
 C[i] = A[i] + B[i];
}

void mul(int n, float* A, float* B, float* C) {
 for (int i=0; i<n; i++)
 C[i] = A[i] * B[i];
}

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)
add(n, A, B, tmp1);
mul(n, tmp1, C, tmp2);
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) {
 for (int i=0; i<n; i++)
 E[i] = D[i] + (A[i] + B[i]) * C[i];
}

// compute E = D + (A + B) * C
fused(n, A, B, C, D, E);

Program 1

Program 2

Which code structuring style
would you rather write?

Consider running either of these
programs: would support for
hardware multi-threading help
performance?

